Programmable Switch
Hardware

ECE/CS598HPN

Radhika Mittal

Conventional SDN

* Programmable control plane.

* Data plane can support high bandwiath.
* But has limited flexibility.

* Restricted to conventional packet protocols.

Software Dataplane

* Very extensible and flexible.

* Extensive parallelization to meet performance

requirements.
* Might still be difficult to achieve [00's of Gbps.

* Significant cost and power overhead.

Programmable Hardware

e More flexible than conventional switch hardware.
e | ess flexible than software switches.

* Slightly higher power and cost requirements than
conventional switch hardware.
* Significantly lower than software switches.

Other alternatives?

T
0

Flexibility
~ Efficiency

Image copied from somewhere on the web.

Forwarding Metamorphosis:
Fast Programmable Match-

Action Processing in Hardware
for SDN

Pat Bosshart, Glen Gibb, Hun-Seok Kim,
George Varghese, Nick McKeown, Martin Izzard,
Fernando Mujica, Mark Horowitz

Acknowledgements: Slides from Pat Bosshart's SIGCOMM’| 3 talk

Fixed function switch

L2: 128k x 48

L3: 16k x 32
Exact match .
Longest pFEflx ACL: 4k
match Ternary match
o
o
iy N/
o X =% — X
A
o Queues
_ 8 —
. = @ = — Out
] e} — u
B : — - e =)
= 3] < — &
3 = 8
o A
Stage 1 Stage 2 Stage 3
—>

Data

What if you need flexibility?

* Flexibility to:
* Trade one memory size for another
* Add a new table
* Add a new header field
e Add a different action

* SDN accentuates the need for flexibility

* Gives programmatic control to control plane, expects to
be able to use flexibility

* OpenFlow designed to exploit flexbllity.

What about Alternatives!?
Aren’t there other ways to get flexibility?

* Software! [00x too slow, expensive
* NPUs? [0x too slow, expensive

* FPGAS!? |Ox too slow, expensive

What the Authors Set Out To
Learn

* How to design a flexible switch chip?
* What does the flexibility cost?

RMT Switch Model

Enables flexibility through?
* Programmable parsing: support arbitrary header fields

* Ability to configure number, topology, width, and depths of
match-tables.

* Programmable actions: allow a flexible set of actions (including
arbitrary packet modifications).

What’s Hard about a
Flexible Switch Chip!?

* Big chip

* High frequency
* Wiring intensive
* Many crossbars
* Lots of TCAM

* Interaction between physical design and architecture

The RMT Abstract Model

* Parse graph
* [able graph

ArbitraP' Fields: The Parse Graph

Packet: IPV4 ‘ TCP

{ Ethernet }

LJAEJ

e | ~uop |

Arbitrary Fields: The Parse Graph

Packet: Ethernet IPV4 \ TCP

{ Ethernet }

| 1/

e | ~uop |

Arbitrary Fields: The Parse Graph

Packet: Ethernet IPV4 ‘ RCP ‘ TCP

)

Ethernet }

\

e

{ IPV4

/

)

RCP }

7 o

Arbitrary Fields: Programmable Parser

Header data

v

v

Header
Identification

Field

Extraction

Fields

State &

header
data

TCAM

Next
state

Field
locatio

——
Match index

| l

. L

Action
RAM

Result

Vector To
» Match

|
|
|
|
Racket Header
|
: Engine
|
|
|
|

-)

Figure 4: Programmable parser model.

17

Reconfigurable Match Tables:
The Table Graph

VLAN

Z/////EIHERTYPE
MAC \
FORWARD IPV4-DA IPV6-DA

L7

ACL

v

Changes to Parse Graph and Table Graph

l
>

Ethernet

\
—

VLAN

J

IPV4

IPV6

RC

<

TCP

v

U

DP

|

Parse Graph

Pﬂ{!!!hLE

Table Graph

19

But the Parse Graph and Table Graph
don’t show you how to build a switch

Match/Action Forwarding Model

Queues

Out

=)

=3

Programmable Parser

Deparser

Stage 1 Stage 2 Stage N

Data

21

Performance vs Flexibility

* Multiprocessor: memory bottleneck

* Change to pipeline

* Fixed function chips specialize processors

* Flexible switch needs general purpose CPUs

12 — —> |3 — ————> ACL

CPU

CPU

22

RMT Logical to Physical Table Mapping

Table Graph

Physical

640b

Phvsical

Action

Action

Phuwvsi

cal

IPV6

Logical Table 6
L2D

Action

Detour: CAMs and RAMs

e RAM:

* Looks up the value associated with a memory address.

« CAM

* Looks up memory address of a given value.

* [wo types:
* Binary CAM: Exact match (matches on O or 1)
* Can be implemented using SRAM.
* Ternary CAM (TCAM): Allows wildcard (matches on O, |, or X).

Detour: CAMs

Line No. Address (Binary) Output Port CAM RAM
10 1XX 00 [port= A
1 101XX A 0or1ox—% o1 [port=B
011 XX| searchresult [0 [port=C
2 0110X B 100 11 11 [port=D
3 011XX C ‘
4 10011 D searchdata=01101 output port = B
search lines matchlines

[

mismatch

(

N
Hih HoR Ok [
match

match D— 01 «| address

HoH HiH HiH HoH Ry
match &

HTH HiH

mismatch
| search line drivers I :Q?Il:eh:lllul:\'}) .

searchdata=01101

Source: https://www.pagiamtzis.com/cam/camintro/

Detour: CAMs

ml

sl

dd|T
L o

storage cell

sl

:

mi

" d.’ I
storage cell

OO s
> —=O| -

|:s

(b) Binary CAM cell. (c) Ternary CAM cell
= , —— matchline
sl0 sl0 sin sin sense amp
e
o—d - X L. . | matchline >
'I |' discharge -| |~ \
4 path activate

Source: https://www.pagiamtzis.com/cam/camintro/

Detour: CAMs

Line No. Address (Binary) Output Port CAM RAM
10 1XX 00 [port= A
1 101XX A 0or1ox—% o1 [port=B
011 XX| searchresult [0 [port=C
2 0110X B 100 11 11 [port=D
3 011XX C ‘
4 10011 D searchdata=01101 output port = B
search lines matchlines

[

mismatch

(

N
Hih HoR Ok [
match

match D— 01 «| address

HoH HiH HiH HoH Ry
match &

HTH HiH

mismatch
| search line drivers I :Q?Il:eh:lllul:\'}) .

searchdata=01101

Source: https://www.pagiamtzis.com/cam/camintro/

RMT Logical to Physical Table Mapping

Table Graph

Physical

640b

Phvsical

Action

Action

Phuwvsi

cal

IPV6

Logical Table 6
L2D

Action

Action Processing Model

]

Match result

Data

Instruction

29

Modeled as Multiple VLIW CPUs per Stage

Match result .)
----------- > VLIW Instructions

RMT Switch Design

* 64 x |0Gb ports

* 960M packets/second
* |GHz pipeline

* Programmable parser

* 32 Match/action stages

e Huge TCAM: 10x current chips
e 64K TCAM words x 640b

e SRAM hash tables for exact
matches

e 128K words x 640b
e 224 action processors per stage

e All OpenFlow statistics counters

Outline

* Conventional switch chip are inflexible
* SDN demands flexibility...sounds expensive...

* How do | do it: The RMT switch model
* Flexibility costs less than 5%

32

Cost of Configurability:
Comparison with Conventional
Switch

* Many functions identical: /O, data buffer, queueing...
* Make extra functions optional: statistics

* Memory dominates area
* Compare memory area/bit and bit count

* RMT must use memory bits efficiently to compete on cost

Techniques for flexibility
* Match stage unit RAM configurability
* Ingress/egress resource sharing
* Allows multiple tables per stage
* Match memory overhead reduction and multi-word packing

Chip Comparison with Fixed Function Switches

Area

B 0, buffer, queue, CPU, etc 37% 0.0%
» Match memory & logic 54.3% 8.0%
» VLIW action engine 7.4% 5.5%

Parser + deparser 1.3% 0.7%

Total extra area cost 14.2%

Power

Sein | powsr%oichip |Emracost
= /0 26.0% 0.0%
» Memory leakage 43.7% 4.0%

Logic leakage 7.3% 2.5%

RAM active 2.7% 0.4%

TCAM active 3.5% 0.0%
» Logic active 16.8% 5.5%

Conclusion

* How do we design a flexible chip?

e The RMT switch model

* Bring processing close to the memories:
* pipeline of many stages

* Bring the processing to the wires:
e 224 action CPUs per stage

e How much does it cost!?
e |5%

* Lots of the details how we designed this in 28nm CMOS
are in the paper

Limitations on Flexibility

* Your thoughts!

Since 2013....

e RMT switch has been commercialized

e Barefoot Tofino
e 6.5Tb/s

* Adoption of these swiches!

Your opinions

* Pros

* Proposes RMT as a more flexible alernative to SMT and
MMT.

* Shows viability of a flexible design.
* Evaluates cost and power requirements, shows they are
not significantly high.

* (In contrast to RouteBricks)

* Flexible memory allocation mechanism Is innovative and
efficient.

38

Your opinions

e Cons

* Programmability limitations not discussed? Is it Turing-
complete!

* What are the scalability bottlenecks!

* Why N=32¢

* Conflates memory allocation with match-action
processing.

* No programmability interface.
* How are low-level configurations generated?

e No actual hardware
* Security?

39

Your opinions

* |deas
* A compliler for RMT
* What can RMT's programmability enable?
* Extending the level of programmability / lifting restrictions.

40

