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Conventional view of networks

Data delivery is the only functionality provided 
by such a network.

*contents of the slide borrowed from talks given by Aurojit Panda, NYU



Rise of middleboxes

Data delivery is not the only required functionality. 

*contents of the slide borrowed from talks given by Aurojit Panda, NYU



Rise of middleboxes

Data delivery is not the only required functionality. 

Security: identify and block unwanted traffic.

*contents of the slide borrowed from talks given by Aurojit Panda, NYU



Rise of middleboxes

Data delivery is not the only required functionality. 

Performance: load content faster.

*contents of the slide borrowed from talks given by Aurojit Panda, NYU



Rise of middleboxes

Data delivery is not the only required functionality. 

Performance: reduce bandwidth usage.

*contents of the slide borrowed from talks given by Aurojit Panda, NYU



Rise of middleboxes

Data delivery is not the only required functionality. 

Application support: protocol for legacy application.

*contents of the slide borrowed from talks given by Aurojit Panda, NYU



Rise of middleboxes

One-third of all network devices in 
enterprises are middleboxes!

(source: Sherry et. al., SIGCOMM’12)

Data delivery is not the only required functionality. 

*contents of the slide borrowed from talks given by Aurojit Panda, NYU



Evolution of middleboxes

Dedicated hardware

Packets

ASIC

Packets

CPU

Software

Middleboxes Network functions

Need for
flexibility

*contents of the slide borrowed from talks given by Aurojit Panda, NYU



From hardware middleboxes….

*contents of the slide borrowed from talks given by Aurojit Panda, NYU



…to software network functions (NFs)

*contents of the slide borrowed from talks given by Aurojit Panda, NYU



…to software network functions (NFs)

Primarily deployed in a VM 
(Network Function Virtualization)

*contents of the slide borrowed from talks given by Aurojit Panda, NYU



• Programmability
– ability to update and create new NFs.

• Ease of deployment, configuration, and management.

Key benefits of software network functions

NF Service Chain



• Programmability
– ability to update and create new NFs.

• Ease of deployment, configuration, and management.

Key benefits of software network functions



• Programmability
– ability to update and create new NFs.

• Ease of deployment, configuration, and management.

Being adopted by both carriers and cloud providers.

Key benefits of software network functions



• Complex and costly state management.

• Unpredictable performance.

• Performance degradation.

Benefits of software NF come at a cost



State management during scaling or failover
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Split/Merge: System Support for Elastic Execution in Virtual Middleboxes
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Abstract

Developing elastic applications should be easy. This pa-
per takes a step toward the goal of generalizing elasticity
by observing that a broadly deployed class of software—
the network middlebox—is particularly well suited to
dynamic scale. Middleboxes tend to achieve a clean sep-
aration between a small amount of per-flow network state
and a large amount of complex application logic. We
present a state-centric, systems-level abstraction for elas-
tic middleboxes called Split/Merge. A virtual middle-
box that has appropriately classified its state (e.g., per-
flow state) can be dynamically scaled out (or in) by a
Split/Merge system, but remains ignorant of the number
of replicas in the system. Per-flow state may be transpar-
ently split between many replicas or merged back into
one, while the network ensures flows are routed to the
correct replica. As a result, Split/Merge enables load-
balanced elasticity. We have implemented a Split/Merge
system, called FreeFlow, and ported Bro, an open-source
intrusion detection system, to run on it. In controlled ex-
periments, FreeFlow enables a 25% reduction in maxi-
mum latency while eliminating hotspots during scale-out
and a 50% quicker scale-in than standard approaches.

1 Introduction

The prevalence of Infrastructure as a Service (IaaS)
clouds has given rise to a new breed of applications
that better support elasticity: the ability to scale in or
out to handle variations in workloads [17]. Fundamen-
tal to achieving elasticity is the ability to create or de-
stroy virtual machine (VM) instances, or replicas, and
partitioning work between them [14, 34]. For exam-
ple, a 3-tier Web application may scale out the middle
tier and balance requests between them. Consequently,
the—virtual—middleboxes that these applications rely
on (such as firewalls, intrusion detection systems, and
protocol accelerators) must scale in a similar fashion.

A recent survey of 57 enterprise networks of various
sizes found that scalability was indeed critical for mid-
dleboxes [24].

Due to the diversity of cloud applications, supporting
elasticity has been mostly the burden of the application or
application-level framework [7]. For example, it is their
responsibility to manage replicas and ensure that each
replica will be assigned the same amount of work [1]. In
the worst case, imbalances between replicas can result
in inefficiencies, hotspots (e.g., overloaded replicas with
degraded performance) or underutilized resources [33].

Unlike generic cloud applications, middleboxes share a
unique property that can be exploited to achieve efficient,
balanced elasticity. Despite the complex logic involved
in routing or detecting intrusions, middleboxes are often
implemented around the idea that each individual flow
is an isolated context of execution [22, 26, 31]. Middle-
boxes typically classify packets to a specific flow, and
then interact with data specific to that flow [9, 30]. By
replicating a middlebox and adjusting the flows that each
replica receives from the network—and the associated
state held by each replica—any middlebox can maintain
balanced load between replicas as the middlebox scales
in or out.

To this end, we present a new hypervisor-level ab-
straction for virtual middleboxes called Split/Merge.
A Split/Merge-aware middlebox may be replicated at
will, yet remains oblivious to the existence of replicas.
Split/Merge divides a middlebox application’s state into
two broad classes: internal and external. Internal state
is treated similarly to application logic: it is required for
a given replica to run, but is of no consequence outside
that replica’s execution. External state describes the ap-
plication state that is actually scaled, and can be thought
of as a large distributed data structure that is managed
across all replicas. It can be further subdivided into to
classes: partitioned and coherent state. Partitioned state
is exclusively accessed, flow-specific data, and is the fun-
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Elastic Scaling of Stateful Network Functions
Shinae Woo?†, Justine Sherry‡, Sangjin Han?, Sue Moon†, Sylvia Ratnasamy?, and Scott Shenker?§

?University of California, Berkeley †KAIST ‡CMU §ICSI

Abstract
Elastic scaling is a central promise of NFV but has been
hard to realize in practice. The difficulty arises because
most Network Functions (NFs) are stateful and this state
need to be shared across NF instances. Implementing
state sharing while meeting the throughput and latency
requirements placed on NFs is challenging and, to date,
no solution exists that meets NFV’s performance goals
for the full spectrum of NFs.

S6 is a new framework that supports elastic scaling
of NFs without compromising performance. Its design
builds on the insight that a distributed shared state ab-
straction is well-suited to the NFV context. We organize
state as a distributed shared object (DSO) space and
extend the DSO concept with techniques designed to
meet the need for elasticity and high-performance in
NFV workloads. S6 simplifies development: NF writers
program with no awareness of how state is distributed
and shared. Instead, S6 transparently migrates state
and handles accesses to shared state. In our evaluation,
compared to recent solutions for dynamic scaling of
NFs, S6 improves performance by 100x during scaling
events [25], and by 2-5x under normal operation [27].

1 Introduction
The Network Function Virtualization (NFV) [13] vision
advocates moving middlebox functionality – called Net-
work Functions (NFs) – from dedicated hardware devices
to software applications that run in VMs or containers
on shared server hardware. An important benefit of the
NFV vision is elastic scaling — the ability to increase
or decrease the number of VMs/containers currently
devoted to a particular NF, in response to changes in
offered load. However, realizing such elastic scaling has
proven challenging and solutions to date come with a
significant cost to performance, functionality, and/or ease
of development (§3).

The difficulty arises in that most NFs are stateful, with
state that may be read or updated very frequently (e.g.,
per-packet or per-flow). Hence, elastic scaling requires
more than simply spinning up another VM/container
and updating a load-balancer to send some portion of the
traffic to it.

Instead, scaling can involve migrating state across NF
instances. Migration is important for high performance
(as it avoids remote state accesses) but its implementation
must be fast (to avoid long “pause times” during scaling
events) and should not be burdensome to NF developers.

In addition, elastic scaling must ensure affinity between
packets and their state (i.e., that a packet is directed to the
NF instance that holds the state necessary to process that
packet), and such affinity must be correctly enforced even
in the face of state migrations. A final complication is
that some types of state are not partitionable, but shared
across instances (see §2 for examples). In such cases,
elastic scaling must support access to shared state in
a manner that ensures the consistency requirements of
that state are met, and with minimal disruption to NF
throughput and latency.

The core of any elastic scaling solution is how state is
organized and abstracted to NF applications. Recent work
has explored different options in this regard. Some [33]
assume that all state is local, but neither shared or migrated
– we call this the local-only approach. Others [25,37] sup-
port a richer model in which state is exposed to NF devel-
opers as either local or remote, and developers can migrate
state from remote to local storage, or explicitly access
remote state – we call this the local+remote approach.
Still others [27] assume that all state is remote, stored in a
centralized store – we call this the remote-only approach.

The above were pioneering efforts in exploring the de-
sign space for NF state management. But, as we elaborate
on in §3, they still fall short of an ideal solution: the local-
only approach achieves high performance but is limited
in the NF functionality that it supports; the local+remote
approach supports arbitrary NF functionality but compli-
cates NF development and incurs long downtimes from
repartitioning state en bloc during scaling events; the
remote-only approach is elegant but imposes high perfor-
mance overheads even under normal operation.

In this paper, we propose a new approach to elastic
scaling in which state is organized as a distributed shared
object (DSO) space: objects encapsulate NF state and
live in a global namespace, where all NF instances can
read/write any object. While DSO is an old idea, it has not
to our knowledge been applied to the NFV context. In par-
ticular, DSO has not been shown to the meet the elasticity
and performance requirements that NFV imposes.

We present S6, a development and runtime framework
tailored to NFV. To meet the needs of NFV workloads,
S6 extends the DSO concept as follows: (1) for space
elasticity, we introduce dynamic reorganization of the
DSO keyspace; (2) to minimize the downtime associated
with scaling events, we introduce a “smart but lazy” state
reorganization; (3) to reduce remote access overheads, we
introduce per-packet microthreads and; (4) to optimize
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ABSTRACT
Network middleboxes must offer high availability, with au-

tomatic failover when a device fails. Achieving high avail-

ability is challenging because failover must correctly restore

lost state (e.g., activity logs, port mappings) but must do so

quickly (e.g., in less than typical transport timeout values to

minimize disruption to applications) and with little overhead

to failure-free operation (e.g., additional per-packet laten-

cies of 10-100s of µs). No existing middlebox design pro-

vides failover that is correct, fast to recover, and imposes

little increased latency on failure-free operations.

We present a new design for fault-tolerance in middle-

boxes that achieves these three goals. Our system, FTMB

(for Fault-Tolerant MiddleBox), adopts the classical ap-

proach of “rollback recovery” in which a system uses in-

formation logged during normal operation to correctly re-

construct state after a failure. However, traditional rollback

recovery cannot maintain high throughput given the frequent

output rate of middleboxes. Hence, we design a novel solu-

tion to record middlebox state which relies on two mech-

anisms: (1) ‘ordered logging’, which provides lightweight

logging of the information needed after recovery, and (2) a

‘parallel release’ algorithm which, when coupled with or-

dered logging, ensures that recovery is always correct. We

implement ordered logging and parallel release in Click and

show that for our test applications our design adds only

30µs of latency to median per packet latencies. Our system

introduces moderate throughput overheads (5-30%) and can

reconstruct lost state in 40-275ms for practical systems.

CCS Concepts
• Networks ! Middleboxes / network appliances; •

Computer systems organization ! Availability;

Keywords
middlebox reliability; parallel fault-tolerance
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1. INTRODUCTION
Middleboxes play a crucial role in the modern Internet

infrastructure – they offer an easy way to deploy new dat-

aplane functions and are often as numerous as routers and

switches [35,59,62]. Yet, because middleboxes typically in-

volve proprietary monolithic software running on dedicated

hardware, they can be expensive to deploy and manage.

To rectify this situation, network operators are moving

towards Network Function Virtualization (NFV), in which

middlebox functionality is moved out of dedicated physical

boxes into virtual appliances that can be run on commodity

processors [32]. While the NFV vision solves the ded-

icated hardware problem, it presents some technical chal-

lenges of its own. Two of the most commonly cited chal-

lenges have been performance [38, 45, 52, 55, 58] and man-

agement [33, 35, 49] with multiple efforts in both industry

and academia now exploring these questions. We argue that

an equally important challenge – one that has received far

less attention – is that of fault-tolerance.

Today, the common approach to fault tolerance in middle-

boxes is a combination of careful engineering to avoid faults,

and deploying a backup appliance to rapidly restart when

faults occur. Unfortunately, neither of these approaches –

alone or in combination – are ideal, and the migration to

NFV will only exacerbate their problematic aspects.

With traditional middleboxes, each “box” is developed by

a single vendor and dedicated to a single application. This

allows vendors greater control in limiting the introduction of

faults by, for example, running on hardware designed and

tested for reliability (ECC, proper cooling, redundant power

supply, etc.). This approach will not apply to NFV, where

developers have little control over the environment in which

their applications run and vendor diversity in hardware and

applications will explode the test space. And while one

might contemplate (re)introducing constraints on NFV plat-

forms, doing so would be counter to NFV’s goal of greater

openness and agility in middlebox infrastructure.

The second part to how operators handle middlebox fail-

ure is also imperfect. With current middleboxes, operators

often maintain a dedicated per-appliance backup. This is

inefficient and offers only a weak form of recovery for the

many middlebox applications that are stateful – e.g., Net-

work Address Translators (NATs), WAN Optimizers, and In-

trusion Prevention Systems all maintain dynamic state about
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Stateless Network Functions:Breaking the Tight Coupling of State and Processing
Murad Kablan, Azzam Alsudais, Eric KellerUniversity of Colorado, Boulder

Franck Le
IBM Research

Abstract
In this paper we present Stateless Network Functions,a new architecture for network functions virtualization,where we decouple the existing design of network func-tions into a stateless processing component along witha data store layer. In breaking the tight coupling, weenable a more elastic and resilient network function in-frastructure. Our StatelessNF processing instances arearchitected around efficient pipelines utilizing DPDKfor high performance network I/O, packaged as Dockercontainers for easy deployment, and a data store in-terface optimized based on the expected request pat-terns to efficiently access a RAMCloud-based data store.A network-wide orchestrator monitors the instances forload and failure, manages instances to scale and provideresilience, and leverages an OpenFlow-based network todirect traffic to instances. We implemented three exam-ple network functions (network address translator, fire-wall, and load balancer). Our evaluation shows (i) we areable to reach a throughput of 10Gbit/sec, with an addedlatency overhead of between 100µs and 500µs, (ii) weare able to have a failover which does not disrupt ongo-ing traffic, and (iii) when scaling out and scaling in weare able to match the ideal performance.

1 Introduction
As evidenced by their proliferation, middleboxes arean important component in today’s network infrastruc-tures [50]. Middleboxes provide network operators withan ability to deploy new network functionality as add-oncomponents that can directly inspect, modify, and blockor re-direct network traffic. This, in turn, can help in-crease the security and performance of the network.While traditionally deployed as physical appliances,with Network Functions Virtualization (NFV), network

functions such as firewalls, intrusion detection systems,network address translators, and load balancers no longerhave to run on proprietary hardware, but can run in soft-ware, on commodity servers, in a virtualized environ-ment, with high throughput [25]. This shift away fromphysical appliances should bring several benefits includ-ing the ability to elastically scale the network functionson demand and quickly recover from failures.However, as others have reported, achieving thoseproperties is not that simple [44, 45, 23, 49]. The cen-tral issue revolves around the state locked into the net-work functions – state such as connection information ina stateful firewall, substring matches in an intrusion de-tection system, address mappings in a network addresstranslator, or server mappings in a stateful load balancer.Locking that state into a single instance limits the elastic-ity, resilience, and ability to handle other challenges suchas asymmetric/multi-path routing and software updates.To overcome this, there have been two lines of re-search, each focusing on one property1. For failure, re-cent works have proposed either (i) checkpointing thenetwork function state regularly such that upon failure,the network function could be reconstructed [44], or (ii)logging all inputs (i.e., packets) and using determinis-tic replay in order to rebuild the state upon failure [49].These solutions offer resilience at the cost of either asubstantial increase in per-packet latency (on the orderof 10ms), or a large recovery time at failover (e.g., re-playing all packets received since the last checkpoint),and neither solves the problem of elasticity. For elastic-ity, recent works have proposed modifying the networkfunction software to enable the migration of state fromone instance to another via an API [29, 45, 23]. State mi-gration, however, takes time, inherently does not solve
1A third line, sacrifices the benefits of maintaining state in order toobtain elasticity and resilience [20].
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1. INTRODUCTION
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Pico Replication: A High Availability Framework for Middleboxes
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Abstract

Middleboxes are being rearchitected to be service ori-

ented, composable, extensible, and elastic. Yet system-

level support for high availability (HA) continues to in-

troduce significant performance overhead. In this paper,

we propose Pico Replication (PR), a system-level frame-

work for middleboxes that exploits their flow-centric

structure to achieve low overhead, fully customizable

HA. Unlike generic (virtual machine level) techniques,

PR operates at the flow level. Individual flows can be

checkpointed at very high frequencies while the mid-

dlebox continues to process other flows. Furthermore,

each flow can have its own checkpoint frequency, out-

put buffer and target for backup, enabling rich and di-

verse policies that balance—per-flow—performance and

utilization. PR leverages OpenFlow to provide near in-

stant flow-level failure recovery, by dynamically rerout-

ing a flow’s packets to its replication target. We have

implemented PR and a flow-based HA policy. In con-

trolled experiments, PR sustains checkpoint frequencies

of 1000Hz, an order of magnitude improvement over

current VM replication solutions. As a result, PR dras-

tically reduces the overhead on end-to-end latency from

280% to 15.5% and throughput overhead from 99.5% to

3.2%.
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1 Introduction
Middleboxes [36–42] pervade data center networks of

various scales. Recently, middlebox architectures are be-

ing re-engineered to be more service oriented [13, 43,

47, 52], composable [24], extensible [5] and dynami-

cally scalable [21]. In this new vision, services like pro-

tocol acceleration, load balancing, and intrusion detec-

tion/prevention can be easily customized, managed, and

scaled to match the needs of the flows in the data cen-

ter. Despite the renewed interest in middleboxes, high

availability support is limited and requires that each mid-

dlebox service implements its own HA mechanism and

policy.1 This paper re-examines system support for HA

in middleboxes.Current middlebox HA approaches often deploy a

cluster of replicas or configure a pair replicas in ac-

tive/standby or active/active replication setups [29, 31].

In such configurations, middlebox failure is typically

not transparent to the endpoints. Failure causes existing

flows in the failed replica to drop [30]; endpoints must

explicitly reestablish the lost connections. Router redun-

dancy protocols like HSRP [56] and VRRP [62] only

address part of the problem: how to re-route flows to a

standby appliance in case of a failure. These protocols

do not address the problem of persisting session (flow)

state, which is essential to maintaining end-to-end con-

nectivity. This paper shows that preserving flow state—

a key ingredient for graceful recovery—can be achieved

without introducing substantial design complexity in the

middlebox or sacrificing performance.
One straightforward approach to achieving generic

middlebox HA is to directly apply HA solutions for vir-

tual machines (VMs). VM-level checkpointing [9, 17]

and event logging [11, 12, 23] techniques can be used to

protect arbitrary middleboxes, transparently. However,

such approaches are heavyweight because (1) the entire

VM must be suspended to ensure a consistent check-

point, (2) all flows—including delay-sensitive flows—

1High availability is crucial for middleboxes, as evidenced by re-

cent outages related to middlebox services [44, 45, 50].
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Abstract
By moving network appliance functionality from propri-
etary hardware to software, Network Function Virtualiza-
tion promises to bring the advantages of cloud computing to
network packet processing. However, the evolution of cloud
computing (particularly for data analytics) has greatly bene-
fited from application-independent methods for scaling and
placement that achieve high efficiency while relieving pro-
grammers of these burdens. NFV has no such general man-
agement solutions. In this paper, we present a scalable and
application-agnostic scheduling framework for packet pro-
cessing, and compare its performance to current approaches.

1. Introduction
The proliferation of network processing appliances (“mid-
dleboxes”) has been accompanied by a growing recognition
of the problems they bring, including expensive hardware
and complex management. This recognition led the network-
ing industry to launch a concerted effort towards Network
Function Virtualization (NFV) with the goal of bringing
greater openness and agility to network dataplanes [8]. In-
spired by the benefits of cloud computing, NFV advocates
moving Network Functions (NFs) out of dedicated physical
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boxes into virtualized software applications that can be run
on commodity, general purpose processors. NFV has quickly
gained significant momentum with over 220 industry partic-
ipants, multiple proof-of-concept prototypes, and a number
of emerging product offerings [2, 9].

While this momentum is encouraging, a closer look “un-
der the hood” reveals a less rosy picture: NFV products and
prototypes tend to be merely virtualized software implemen-
tations of products that were previously offered as dedicated
hardware appliances. Thus, NFV is currently replacing, on a
one-to-one basis, monolithic hardware with monolithic soft-
ware. While this is a valuable first step – as it is expected
to lower capital costs and deployment barriers – it fails to
provide a coherent management solution for middleboxes.
Each software middlebox still comes as a closed implemen-
tation bundled with a custom management solution that ad-
dresses issues such as overload detection, load balancing,
elastic scaling, and fault-tolerance for that particular NF.

This leads to two problems. First, the operator must cope
with many NF-specific management systems. Second, NF
developers must invent their own solutions to common but
non-trivial problems such as dynamic scaling and fault tol-
erance; in the worst case this results in inadequate solutions
(e.g., solutions that do not scale well) and in the best case
results in vendors constantly reinventing the wheel.

Inspired by the success of data analytic frameworks (e.g.,
MapReduce, Hadoop and Spark), we argue that NFV needs
a framework, by which we mean a software environment
for packet-processing applications that implements general
techniques for common issues. Such issues include: place-
ment (which NF runs where), elastic scaling (adapting the
number of NF instances and balancing load across them),
service composition, resource isolation, fault-tolerance, en-
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Paving the Way for NFV:
Simplifying Middlebox Modi!cations using StateAlyzr
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Abstract

Important Network Functions Virtualization (NFV)
scenarios such as ensuring middlebox fault tolerance or
elasticity require redistribution of internal middlebox
state. While many useful frameworks exist today for mi-
grating/cloning internal state, they require modi!cations
to middlebox code to identify needed state. !is process
is tedious and manual, hindering the adoption of such
frameworks. We present a framework-independent sys-
tem, StateAlyzr, that embodies novel algorithms adapted
from program analysis to provably and automatically
identify all state that must be migrated/cloned to ensure
consistent middlebox output in the face of redistribu-
tion. We !nd that StateAlyzr reducesman-hours required
for code modi!cation by nearly 20 . We apply State-
Alyzr to four open source middleboxes and !nd its algo-
rithms to be highly precise. We !nd that a large amount
of, but not all, live state matters toward packet process-
ing in these middleboxes. StateAlyzr’s algorithms can re-
duce the amount of state that needs redistribution by 600-
8000 compared to naive schemes.

1 Introduction
Network functions virtualization (NFV) promises to of-
fer networks great &exibility in handling middlebox load
spikes and failures by helping spin up new virtual in-
stances and dynamically redistributing tra'c among in-
stances. Central to realizing the bene!ts of such elasticity
and fault tolerance is the ability to handle internal mid-
dlebox state during tra'c redistribution. Becausemiddle-
box state is dynamic (it can be updated for each incom-
ing packet) and critical (its current value determinesmid-
dlebox actions), the relevant internal state must be made
available when tra'c is rerouted to a di(erent middlebox
instance [16, 26, 30].

Recognizing this, and given the high-overhead and
poor e'ciency of existing approaches for replicating and
sharing application state [16, 24, 26], researchers have
developed several exciting frameworks for transferring,
cloning, or sharing live middlebox state across instances,
e.g., OpenNF [16], FTMB [30], Split/Merge [26], Pico
Replication [24], and StatelessNF [20].

However, for middleboxes to work with these frame-
works, middlebox developers must modify, or at least
annotate, their code to perform custom state allocation,
track updates to state, and (de)serialize state objects. !e

central contribution of this paper is a novel, framework-
independent system that greatly reduces the e(ort in-
volved in making such modi!cations.

!ree factors make such modi!cations di'cult today:
(i) middlebox so,ware is extremely complex, and the
logic to update/create di(erent pieces of state can be intri-
cate; (ii) there may be 10s-100s of object types that corre-
spond to state that needs explicit handling; and (iii) mid-
dleboxes are extremely diverse. Factors i and ii make it
di'cult to reason about the completeness or correctness
of manual modi!cations. And, iii means manual tech-
niques that apply to one middlebox may not extend to
another. Our own experience in modifying middleboxes
to work with OpenNF [16] underscores these problems.
Making even a simple monitoring appliance (PRADS [6],
with 10K LOC) OpenNF-compliant took over 120 man-
hours. We had to iterate over multiple code changes and
corresponding unit tests to ascertain completeness of our
modi!cations; moreover, the process we used for modi-
fying this middlebox could not be easily adapted to other
more complex ones!

!ese di'culties signi!cantly raise the bar for the
adoption of these otherwise immensely useful state han-
dling frameworks. To reduce manual e(ort and ease
adoption, we develop StateAlyzr, a system that relies on
data and control-!ow analysis to automate identi!cation
of state objects that need explicit handling. Using State-
Alyzr’s output, developers can easily make framework-
compliant changes to arbitrary middleboxes, e.g., iden-
tify which state to allocate using custom libraries for [20,
24, 26], determine where to track updates to state [16,
26, 30], (de)serialize relevant state objects for transfer/-
cloning [16], andmerge externally provided state with in-
ternal structures [16, 24]. In practice we !nd StateAlyzr
to be highly e(ective. For example, leveraging StateAlyzr
to make PRADS OpenNF-compliant took under 6 man-
hours of work.

Importantly, transferring/cloning state objects identi-
!ed with StateAlyzr is provably sound and precise. !e
former means that the aggregate output of a collection of
instances following redistribution is equivalent to the out-
put thatwould have been produced had redistribution not
occurred.!e lattermeans that StateAlyzr identi!esmin-
imal state to transfer so as to ensure that redistribution
o(ers good performance and incurs low overhead.

However, achieving high precision without compro-
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Abstract

Network Intrusion Detection Systems (NIDS) have be-

come crucial to securing modern networks. To be effective,

a NIDS must be able to counter evasion attempts and oper-

ate at or near wire-speed. Failure to do so allows malicious

packets to slip through a NIDS undetected. In this paper, we

explore NIDS evasion through algorithmic complexity at-

tacks. We present a highly effective attack against the Snort

NIDS, and we provide a practical algorithmic solution that

successfully thwarts the attack. This attack exploits the be-

havior of rule matching, yielding inspection times that are

up to 1.5 million times slower than that of benign packets.

Our analysis shows that this attack is applicable to many

rules in Snort’s ruleset, rendering vulnerable the thousands

of networks protected by it. Our countermeasure confines

the inspection time to within one order of magnitude of be-

nign packets. Experimental results using a live system show

that an attacker needs only 4.0 kbps of bandwidth to perpet-

ually disable an unmodified NIDS, whereas all intrusions

are detected when our countermeasure is used.

1. Introduction

Network Intrusion Detection Systems (NIDS) and Intru-

sion Prevention Systems (IPS) have become crucial to se-

curing today’s networks. Typically, a NIDS residing on the

edge of a network performs deep packet inspection on every

packet that enters the protected domain. When a packet is

matched against a signature, an alert is raised, indicating an

attempted intrusion or other misuse.

To be effective in an online environment, packet inspec-

tion must be performed at or near wire speed. The con-

sequences of not doing so can be dire: an intrusion detec-

tion system that fails to perform packet inspection at the

required rate will allow packets to enter the network unde-

tected. Worse, an inline intrusion prevention system that

fails to keep up can cause excessive packet loss.

A NIDS must also guard against evasion attempts which

often succeed by exploiting ambiguities in a protocol def-

inition itself. For example, attack mechanisms have relied

on ambiguities in TCP to develop evasion techniques us-

ing overlapping IP fragments, TTL manipulation, and other

transformations [10, 15, 18].

In this paper, we explore NIDS evasion through the use

of algorithmic complexity attacks [9]. Given an algorithm

whose worst-case performance is significantly worse than

its average case performance, an algorithmic complexity at-

tack occurs when an attacker is able to trigger worst-case

or near worst-case behavior. To mount evasion attempts in

NIDS, two attack vectors are required. The first is the true

attack that targets a host inside the network. The second is

aimed squarely at the NIDS and serves as a cover by slow-

ing it down so that incoming packets (including the true at-

tack) are able to slip through undetected. Evasion is most

successful when the true attack enters the network, and nei-

ther it nor the second attack is detected by the NIDS.

We present an algorithmic complexity attack that ex-

ploits worst-case signature matching behavior in a NIDS.

By carefully constructing packet payloads, our attack forces

the signature matcher to repeatedly backtrack during in-

spection, yielding packet processing rates that are up to 1.5

million times slower than average. We term this type of

algorithmic complexity attack a backtracking attack. Our

experiments show that hundreds of intrusions can success-

fully enter the network undetected during the course of a

backtracking attack against a NIDS. Further, the backtrack-

ing attack itself requires very little bandwidth; i.e., a single

attack packet sent once every three seconds is enough to

perpetually disable a NIDS.

Our countermeasure to the backtracking attack is an al-

gorithmic, semantics-preserving enhancement to signature

matching based on the concept of memoization. The core

idea is straightforward: whereas the backtracking attack ex-

ploits the need of a signature matcher to evaluate signatures

at all successful string match offsets, a memoization table

can be used to store intermediate state that must otherwise

be recomputed. Our defense against the backtracking at-

tack relies on the use of better algorithms that reduce the
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ABSTRACT
Software network functions promise to simplify the deploy-
ment of network services and reduce network operation cost.
However, they face the challenge of unpredictable perfor-
mance. Given this performance variability, it is imperative
that during deployment, network operators consider the per-
formance of the NF not only for typical but also adversarial
workloads. We contribute a tool that helps solve this chal-
lenge: it takes as input the LLVM code of a network function
and outputs packet sequences that trigger slow execution
paths. Under the covers, it combines directed symbolic execu-
tion with a sophisticated cache model to look for execution
paths that incur many CPU cycles and involve adversarial
memory-access patterns. We used our tool on 11 network
functions that implement a variety of data structures and dis-
covered workloads that can in some cases triple latency and
cut throughput by 19% relative to typical testing workloads.
KEYWORDS
Network Function Performance; Adversarial Inputs

1 INTRODUCTION
This work is about software network functions (NFs): pieces
of code, typically written in C or C++, that provide packet-
processing functionality, such as forwarding, load balancing
and network address translation. Traditionally, such func-
tionality has been relegated to closed network appliances or
middleboxes, often implemented in hardware. Recently, how-
ever, there has been a push towards software NFs, which have
the potential to o�ermore �exibility, reduced time-to-market,
and reduced capital and operating expenses [18, 34, 35].
This shift from hardware middleboxes to software NFs
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comes with the challenge of unpredictable performance.
While hardware middleboxes process packets through ASICs
that typically yield stable performance, software NFs process
packets on general-purpose CPUs, which may yield vari-
able performance. This variability provides an attack surface
for adversaries seeking to degrade NF performance, e.g., by
sending specially crafted packet sequences that signi�cantly
increase the per-packet latency and/or decrease throughput.
Hence, when network operators deploy a new NF, they need
to know its performance in the face of not only typical but
also adversarial workloads; predicting NF performance as-
suming simple workloads, e.g., small packets with a uniform
or Zip�an distribution of destination IP addresses [15], is
useful but insu�cient.
However, �nding adversarial workloads in NFs—or any

other non-trivial piece of software—can be hard. Di�erent
packet sequences can traverse di�erent execution paths, with
di�erent performance envelopes. In some scenarios, �nding
the “bad paths” and the workloads that exercise them is
relatively easy, e.g., when state is stored in a tree, in which
case the adversarial workloads are those that update the
tree in a way that induces skew. There are, however, more
complicated scenarios, e.g., when state is stored in a hash
table, in which case workloads that induce hash collisions
can signi�cantly degrade performance.
Our contribution is CASTAN (Cycle Approximating Sym-

bolic Timing Analysis for Network Functions), a tool that au-
tomatically synthesizes adversarial workloads for NFs. Given
the LLVM [2] code of an NF and a processor-speci�c cache
model, CASTAN tries to discover execution paths that con-
sume relatively large numbers of CPU cycles and synthe-
sizes workloads that trigger them. We designed CASTAN with
two properties in mind: (a) it should �nish in useful time
(minutes to hours); and (b) it should, ideally, discover work-
loads that are close to the worst-case scenario, even though
we cannot formally guarantee that this will always be the
case. The intended users of our tool are NF developers and
network operators: developers can use CASTAN’s workloads
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Abstract

We present a new
class of low-band

width denial of

service attacks th
at exploit algorith

mic deficiencies

in many common
applications’ data

structures. Fre-

quently used dat
a structures have

“average-case”

expected running
time that’s far mo

re efficient than

the worst case. F
or example, both

binary trees and

hash tables can de
generate to linked

lists with care-

fully chosen inpu
t. We show how

an attacker can

effectively compu
te such input, and

we demonstrate

attacks against th
e hash table imp

lementations in

two versions of P
erl, the Squid we

b proxy, and the

Bro intrusion det
ection system. U

sing bandwidth

less than a typica
l dialup modem,

we can bring a

dedicated Bro se
rver to its knees

; after six min-

utes of carefully c
hosen packets, ou

r Bro server was

dropping as much
as 71% of its traffi

c and consum-

ing all of its CPU
. We show how m

odern universal

hashing techniqu
es can yield perfo

rmance compa-

rable to common
place hash functi

ons while being

provably secure a
gainst these attack

s.

1 Introduction

When analyzing
the running time

of algorithms,

a common techn
ique is to differe

ntiate best-case,

common-case, an
d worst-cast perfo

rmance. For ex-

ample, an unbala
nced binary tree

will be expected

to consume O(n logn) time to
insert n elements

,

but if the element
s happen to be so

rted beforehand,

then the tree wou
ld degenerate to a

linked list, and

it would take O(n2) time to inse
rt all n elements.

Similarly, a hash
table would be ex

pected to con-

sume O(n) time to insert
n elements. How

ever, if

each element has
hes to the same b

ucket, the hash

table will also deg
enerate to a linked

list, and it will

take O(n2) time to inser
t n elements.

While balanced t
ree algorithms, su

ch as red-black

trees [11], AVL tr
ees [1], and treap

s [17] can avoid

predictable input
which causes wo

rst-case behav-

ior, and universa
l hash functions

[5] can be used

to make hash fun
ctions that are no

t predictable by

an attacker, many
common applicat

ions use simpler

algorithms. If an
attacker can cont

rol and predict

the inputs being u
sed by these algo

rithms, then the

attacker may be a
ble to induce the

worst-case exe-

cution time, effec
tively causing a d

enial-of-service

(DoS) attack.

Such algorithmic
DoS attacks have

much in com-

mon with other lo
w-bandwidth DoS

attacks, such as

stack smashing [2
] or the ping-of-de

ath 1, wherein a

relatively short m
essage causes an I

nternet server to

crash or misbehav
e. While a variet

y of techniques

can be used to a
ddress these DoS

attacks, com-

mon industrial pr
actice still allows

bugs like these

to appear in comm
ercial products. H

owever, unlike

stack smashing, a
ttacks that target p

oorly chosen al-

gorithms can func
tion even against

code written in

safe languages. O
ne early example

was discovered

by Garfinkel [10
], who described

nested HTML

tables that induce
d the browser to

perform super-

linear work to de
rive the table’s o

n-screen layout.

More recently, St
ubblefield and De

an [8] described

attacks against S
SL servers, where a

malicious

web client can co
erce a web serve

r into perform-

ing expensive RS
A decryption opera

tions. They

1http://www.in
secure.org/sp

loits/

ping-o-death
.html has a nice

summary.
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Abstract—7KLV SDSHU VWDUWV E\ GHPRQVWUDWLQJ WKH YXOQHUDELOLW\
RI 'HHS 3DFNHW ,QVSHFWLRQ �'3,� PHFKDQLVPV� ZKLFK DUH DW WKH
FRUH RI VHFXULW\ GHYLFHV� WR DOJRULWKPLF FRPSOH[LW\ GHQLDO RI VHU�
YLFH DWWDFNV� WKXV H[SRVLQJ D ZHDNQHVV LQ WKH ¿UVW OLQH RI GHIHQVH
RI HQWHUSULVH QHWZRUNV DQG FORXGV� $ V\VWHP DQG D PXOWL�FRUH DU�
FKLWHFWXUH WR GHIHQG IURP WKHVH DOJRULWKPLF FRPSOH[LW\ DWWDFNV LV
SUHVHQWHG LQ WKH VHFRQG SDUW RI WKH SDSHU� 7KH LQWHJUDWLRQ RI WKLV
V\VWHP ZLWK WZR GLIIHUHQW '3, HQJLQHV LV GHPRQVWUDWHG DQG GLV�
FXVVHG� 7KH YXOQHUDELOLW\ LV H[SRVHG E\ VKRZLQJ KRZ D VLPSOH ORZ
EDQGZLGWK FDFKH�PLVV DWWDFN WDNHV GRZQ WKH $KR�&RUDVLFN �$&�
SDWWHUQ PDWFKLQJ DOJRULWKP WKDW OLHV DW WKH KHDUW RI PRVW '3, HQ�
JLQHV� $V D ¿UVW VWHS LQ WKH PLWLJDWLRQ RI WKH DWWDFN� ZH KDYH GH�
YHORSHG D FRPSUHVVHG YDULDQW RI WKH $& DOJRULWKP WKDW LPSURYHV
WKH ZRUVW FDVH SHUIRUPDQFH �XQGHU DQ DWWDFN�� 6WLOO� XQGHU QRUPDO
WUDI¿F LWV UXQQLQJ�WLPH LV ZRUVH WKDQ FODVVLFDO $& LPSOHPHQWD�
WLRQV� 7R RYHUFRPH WKLV SUREOHP� ZH LQWURGXFH ²0XOWL�
&RUH $UFKLWHFWXUH WR 0LWLJDWH &RPSOH[LW\ $WWDFNV� ZKLFK G\QDPL�
FDOO\ FRPELQHV WKH FODVVLFDO $& DOJRULWKPZLWK RXU FRPSUHVVHG LP�
SOHPHQWDWLRQ� WR SURYLGH D UREXVW VROXWLRQ WR PLWLJDWH WKLV FDFKH�
PLVV DWWDFN� :H GHPRQVWUDWH WKH HIIHFWLYHQHVV RI RXU DUFKLWHFWXUH
E\ H[DPLQLQJ FDFKH�PLVV DOJRULWKPLF FRPSOH[LW\ DWWDFNV DJDLQVW
'3, HQJLQHV DQG VKRZ D JRRGSXW ERRVW RI XS WR ���� )LQDOO\� ZH
VKRZ WKDW RXU DUFKLWHFWXUH PD\ EH JHQHUDOL]HG WR SURYLGH D SULQ�
FLSDO VROXWLRQ WR D ZLGH YDULHW\ RI DOJRULWKPLF FRPSOH[LW\ DWWDFNV�Index Terms—&RPSOH[LW\ DWWDFN� GHHS SDFNHW LQVSHFWLRQ� 'R6�
PXOWL�FRUH�

,� ,1752'8&7,216 (&85,7< GHYLFHV� VXFK DV 1HWZRUN ,QWUXVLRQ 'HWHFWLRQRU 3UHYHQWLRQ 6\VWHPV �1,'6 RU 1,36�� DUH WKH IURQW GH�IHQVH OLQH DJDLQVW F\EHU DWWDFNV RYHU WKH ,QWHUQHW� $ FHQWUDO FRP�SRQHQW RI 1,'6�1,36 LV DDeep Packet Inspection �'3,� HQJLQH�LQ ZKLFK WKH SD\ORDG RI WKH PHVVDJHV LV LQVSHFWHG WR GHWHFW SUH�GH¿QHG VLJQDWXUHV RI PDOLFLRXV DWWDFNV�

0DQXVFULSW UHFHLYHG 6HSWHPEHU ��� ����� UHYLVHG $SULO ��� ���� DQG
2FWREHU ��� ����� DFFHSWHG 'HFHPEHU ��� ����� DSSURYHG E\ ,(((�$&0
75$16$&7,216 21 1(7:25.,1* (GLWRU 0� 0HR� 'DWH RI SXEOLFDWLRQ -DQXDU\
��� ����� GDWH RI FXUUHQW YHUVLRQ 'HFHPEHU ��� ����� 7KLV ZRUN ZDV VXSSRUWHG
E\ WKH (XURSHDQ 5HVHDUFK &RXQFLO XQGHU WKH (XURSHDQ 8QLRQ
V 6HYHQWK
)UDPHZRUN 3URJUDPPH �)3�������������(5& *UDQW $JUHHPHQW 1R� ������
DQG 7KH ,VUDHOL &HQWHUV RI 5HVHDUFK ([FHOOHQFH �,�&25(� SURJUDP �&HQWHU 1R�
������ 3DUWLDO DQG SUHOLPLQDU\ YHUVLRQV RI SDUWV RI WKLV SDSHU DSSHDUHG LQ ,(((
+365 ���� DQG LQ $&0�,((( $1&6 �����<� $IHN LV ZLWK WKH %ODYDWQLN 6FKRRO RI &RPSXWHU 6FLHQFH� 7HO $YLY 8QLYHU�
VLW\� 7HO $YLY ������ ,VUDHO�$� %UHPOHU�%DUU LV ZLWK WKH (¿ $UD]L 6FKRRO RI &RPSXWHU 6FLHQFH� ,QWHUGLV�
FLSOLQDU\ &HQWHU +HU]OL\D� +HU]OL\D ������ ,VUDHO�<� +DUFKRO DQG '� +D\ DUH ZLWK WKH 5DFKHO DQG 6HOLP %HQLQ 6FKRRO RI &RP�
SXWHU 6FLHQFH DQG (QJLQHHULQJ� 7KH +HEUHZ 8QLYHUVLW\ RI -HUXVDOHP� -HUXVDOHP
������ ,VUDHO �H�PDLO� \RWDPKF#FV�KXML�DF�LO��<� .RUDO LV ZLWK WKH 'HSDUWPHQW RI &RPSXWHU 6FLHQFH� 3ULQFHWRQ 8QLYHUVLW\�
3ULQFHWRQ� 1- ����� 86$�&RORU YHUVLRQV RI RQH RU PRUH RI WKH ¿JXUHV LQ WKLV SDSHU DUH DYDLODEOH RQOLQH
DW KWWS���LHHH[SORUH�LHHH�RUJ�'LJLWDO 2EMHFW ,GHQWL¿HU ��������71(7�������������

%HLQJ VXFK D FHQWUDO FRPSRQHQW� '3, HQJLQHV PD\ VHUYH DVD SUHIHUUHG WDUJHW IRU GHQLDO�RI�VHUYLFH DWWDFNV� ,Q UHFHQW \HDUV�VXFK DWWDFNV DUH SDUW RI D WUHQG RI D WZR�SKDVH combined attackRQ VHFXULW\ GHYLFHV� WKH DWWDFNHUV ¿UVW QHXWUDOL]H WKH VHFXULW\GHYLFH �H�J�� E\ RYHUZKHOPLQJ LW ZLWK WUDI¿F�� DQG WKHQ� ZKHQ WKHVHFXULW\ GHYLFH KDV EHHQ NQRFNHG GRZQ� DWWDFN WKH DVVHWV LW ZDVSURWHFWLQJ� )RU H[DPSOH� DQ DWWDFN RQ 621< LQ ���� FRPELQHG D''R6 DWWDFN ZLWK FUHGLW FDUGV WKHIW >�@� 6XFK FRPELQHG DWWDFNVXVXDOO\ KDYH D GLIIHUHQW HIIHFW RQ 1,'6 DQG 1,36� ,Q 1,'6�ZKHUH WKH GHYLFH ZRUNV LQ VWHDOWK�PRGH �QDPHO\� PRQLWRULQJWUDI¿F DQG DOHUWLQJ ZKHQ PDOLFLRXV DFWLYLW\ LV GHWHFWHG�� WKHVHDWWDFNV PD\ IRUFH WKH GHYLFH WR VWRS LQVSHFWLQJ SDUW� RU DOO� RI WKHWUDI¿F DQG WKHUHE\ DOORZLQJ DQRWKHU DWWDFN WR SDVV XQQRWLFHG� 2QWKH RWKHU KDQG� LQ�OLQH 1,36� ZKLFK LQVSHFW WKH SDFNHWV RQ WKHLUFULWLFDO SDWK� WKHVH DWWDFNV PLJKW HLWKHU IRUFH WR GURS OHJLWLPDWHWUDI¿F� WKHUHE\� SUDFWLFDOO\ FDXVLQJ D GHQLDO RI VHUYLFH RQ WKHVHUYHUV WKH\ SURWHFW� RU VLPSO\ OHW DOO WUDI¿F JR WKURXJK ZLWKRXWEHLQJ VFDQQHG� )RU H[DPSOH� %UR >�@ DQG 6QRUW >�@� WZR SRSXODURSHQ VRXUFH H[DPSOHV RI VXFK V\VWHPV� DUH ERWK YXOQHUDEOH WRWKLV NLQG RI DWWDFN >�@�7KH DWWDFNV FRQVLGHUHG LQ WKLV SDSHU DUH complexity attacks�ZKLFK H[SORLW WKH JDS EHWZHHQ WKH DPRXQW RI UHVRXUFHV WKHV\VWHP UHTXLUHV ZKHQ SURFHVVLQJ QRUPDO SDFNHWV DQG ZKHQSURFHVVLQJ FDUHIXOO\�FUDIWHG SDFNHWV WKDW FRQVXPH GUDVWLFDOO\PRUH UHVRXUFHV �HLWKHU FRPSXWLQJ� PHPRU\� FDFKH� RU RWKHUUHVRXUFH�� 7KHVH FUDIWHG SDFNHWV� ZKLFK ZH FDOO heavy SDFNHWV�DUH RQ WKH RQH KDQG HDV\ WR FRQVWUXFW� ZKLOH RQ WKH RWKHU KDQG�UHTXLUH YHU\ LQWHQVLYH SURFHVVLQJ IURP WKH V\VWHP� 7KLV LPSOLHVWKDW ZLWK D OLWWOH HIIRUW RQ WKH DWWDFNHU VLGH� WKH WDUJHW V\VWHPVSHQGV D ORW RI HIIRUW DQG LV ERXQG WR ORVH�:H VWDUW E\ GHPRQVWUDWLQJ WKH YXOQHUDELOLW\ RI 6QRUW >�@ WR DFDFKH�PLVV FRPSOH[LW\ DWWDFN DQG� VSHFL¿FDOO\� DQDO\]H LWV '3,HQJLQH YXOQHUDELOLW\ WR VXFK DWWDFNV� 7KH GHIDXOW '3, LPSOHPHQ�WDWLRQ RI 6QRUW LV GHULYHG IURP WKH IXOO PDWUL[ HQFRGLQJ RI WKH$KR�&RUDVLFN DXWRPDWRQ >�@ �GHVFULEHG LQ 6HFWLRQ ,,�� 7KLV LP�SOHPHQWDWLRQ� GHQRWHG DV )8// 0$75,; $&� LV EHOLHYHG WR KDYHD GHWHUPLQLVWLF EHKDYLRU UHJDUGOHVV RI WKH LQSXW� DV HDFK VFDQPDNHV D VLQJOH PHPRU\ DFFHVV SHU �DQ\� LQSXW E\WH� 2XU H[SHU�LPHQW VKRZ WKDW VXFK DQ DWWDFN RQ 6QRUW FDXVHV D SHUIRUPDQFHGHJUDGDWLRQ RI XS WR ����7KH QHJDWLYH UHVXOWV RI WKLV H[SHULPHQW FDOO IRU WKH FRQVWUXF�WLRQ RI D '3, DOJRULWKP WKDW LV QRW VXVFHSWLEOH WR WKH FDFKH�PLVVFRPSOH[LW\ DWWDFN� :H KDYH FRQVLGHUHG D ZLGH UDQJH RI DOJR�ULWKPV DQG WHFKQLTXHV WKDW PLQLPL]H WKH VL]H RI WKH XQGHUO\LQJ')$ DQG GHYLVHG WKH &2035(66('�$& DOJRULWKP� ZKLFK KDVDQ DOPRVW FRQVWDQW WKURXJKSXW� UHJDUGOHVV RI WKH LQSXW SDFNHWV�1HYHUWKHOHVV� WKLV FRPHV ZLWK D SULFH� XQGHU QRQ�DWWDFN WUDI¿F�
��������� � ���� ,(((� 3HUVRQDO XVH LV SHUPLWWHG� EXW UHSXEOLFDWLRQ�UHGLVWULEXWLRQ UHTXLUHV ,((( SHUPLVVLRQ�

6HH KWWS���ZZZ�LHHH�RUJ�SXEOLFDWLRQVBVWDQGDUGV�SXEOLFDWLRQV�ULJKWV�LQGH[�KWPO IRU PRUH LQIRUPDWLRQ�

NFVPerf: Online Performance Monitoring and
Bottleneck Detection for NFV

Priyanka Naik, Dilip Kumar Shaw, Mythili Vutukuru
Department of Computer Science and Engineering, Indian Institute of Technology, Bombay

Email: {ppnaik, dilip13, mythili}@cse.iitb.ac.in

Abstract—Network Function Virtualization (NFV) is a new

trend in networking, where network functions are moving from

custom hardware appliances to software implementations run-

ning on virtual machines (VMs) hosted on commodity hardware.

While the benefits of NFV such as cost reduction and increased

agility are well understood, doubts still exist on whether a

software implementation can match up to the high performance

that hardware appliances deliver. In this context, network oper-

ators would benefit from frameworks that monitor performance

and identify bottlenecks in Virtual Network Function (VNF)

implementations obtained from vendors. While several tech-

niques already exist to identify performance issues in cloud-based

applications, most of them either use hardware resource utiliza-

tions to identify hot-spots (making them incapable of detecting

non-hardware performance bottlenecks) or rely on application

specific measurements (which may not be exposed by VNFs to

vendors always). This paper describes NFVPerf, a performance

monitoring and bottleneck detection tool for NFV. NFVPerf

works as part of a cloud that hosts a NFV deployment, and takes

a configuration file specifying the basic architecture of the VNF

as input. It sniffs packets on all VM-to-VM communication paths,

computes per-hop throughputs and delays, and uses these “black-

box” measurements alone to identify performance bottlenecks

(including software bottlenecks) in real time, without requiring

any instrumentation of the VNF. Further, NFVPerf can be

customized to any VNF implementations with just configuration

changes. Our evaluation of NFVPerf shows that it can monitor

performance and identify bottlenecks in an NFV deployment,

with high accuracy and minimal overhead. We believe that a

system like NFVPerf would form a great addition to cloud

management systems in the era of NFV.

I. INTRODUCTION

Network Function Virtualization (NFV) [1] is a new net-
work architecture model, where network functions that are
traditionally implemented as custom hardware appliances are
now being implemented in software that runs in virtual
machines (VMs), and is hosted on commodity servers or
clouds. Examples of network functions being virtualized in-
clude firewalls [2], load balancers, and a variety of signal-
ing and control plane elements in telecommunication service
provider networks. The telecom industry is currently abuzz
with several vendors providing prototype Virtual Network
Functions (VNFs, e.g., Connect-em [3]), consortia develop-
ing suitable cloud-based platforms to host these VNFs (e.g.,
OpenStack [4], OPNFV [5]), and operators trying to find a
way to migrate from physical network functions to VNFs.

The recent interest in NFV has been spurred by the advent of
faster CPUs and techniques for efficient packet processing in
software (e.g., Intel DPDK [6]), NFV is expected to save costs
for operators because software implementations are cheaper to
build and maintain than hardware appliances, especially given
the increasing complexity of network functions. Further cost
savings come from the fact that VNFs can be easily scaled
on demand to accommodate increased load, while hardware
appliances are often over-provisioned to account for future
increase in demand [7]. NFV also makes it easier to add
new features, improving the flexibility and agility of network
services. However, the excitement around NFV is tempered by
doubts over performance: it is not clear if software appliances
will have the high performance and resiliency of hardware.
Ideally, NFV should provide the same (or similar) level of
performance, availability, and SLA compliance that operators
are accustomed to from physical network functions, to make
NFV a clear winner for operators.

In a typical NFV deployment, a network operator sets up
an NFV infrastructure (NFVI, typically a private or public
cloud), obtains VNFs from vendors that build the software, and
installs the VNFs on the NFVI. The components of the VNF
are typically installed over several physical servers, and the
network is configured to correctly forward the packets along
the VNF forwarding chain (i.e., the sequence of VNF compo-
nents through which a request flows). The operator must then
orchestrate and manage the VNF components throughout their
lifecycle, to ensure good performance and SLA compliance.
For example, the operator must spawn new VMs and scale
the VNFs to meet increased load. The operator must restart,
repair, or replace failed VNFs. All these actions need a basic
mechanism to begin with: a way to monitor performance of
the VNF and identify performance bottlenecks.

Most cloud operators [8] identify performance bottle-
necks by monitoring hardware resource utilizations, or other
application-specific metrics obtained from instrumenting the
application itself (§II). For example, some cloud services use
thresholds on the utilizations of resources to identify hot-
spots, and spawn a new VM if the utilization of the bottleneck
resource of the service exceeds the threshold. Other research
uses request service times or other measurements from the
application to estimate system capacity and detect overload
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ABSTRACTThe advent of network functions virtualization (NFV) means that

data planes are no longer simply composed of routers and switches.

Instead they are very complex and involve a variety of sophisti-

cated packet processing elements that reside on the OSes and soft-

ware running on compute servers where network functions (NFs)

are hosted. In this paper, we argue that these new “software data

planes” are susceptible to at least three new classes of performance

problems. To diagnose such problems, we design, implement and

evaluate, PerfSight, a ground-up system that works by extracting

comprehensive low-level information regarding packet processing

and I/O performance of the various elements in the software data

plane. PerfSight then analyzes the information gathered in various

dimensions (e.g., across all VMs on a machine, or all VMs de-

ployed by a tenant). By looking across aggregates, we show that

it becomes possible to detect and diagnose key performance prob-

lems. Experimental results show that our framework can result in

accurate detection of the root causes of key performance problems

in software data planes, and it imposes very little overhead.
Categories and Subject Descriptors

C.2 COMPUTER-COMMUNICATION NETWORKS [C.2.3 Net-

work Operations]: Network managementKeywords
data center networks; software data plane; performance; diagnosis

1. INTRODUCTIONData plane diagnosis tools are invaluable toward managing and

troubleshooting networks. Tools such as ping and traceroute, and

frameworks such as NetFlow [4] and sFlow [8], are routinely used

by network operators both to understand whether the network is

functioning as expected, and, if not, understand what may be caus-

ing the underlying problem.However, in recent years, network data planes have changed

in fundamental ways. In addition to simple L2 and L3 devices,
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they are increasingly composed of a wide range of network func-

tions, or middleboxes, that perform custom packet processing to aid

in satisfying various network-wide objectives pertaining to perfor-

mance, security, and compliance; examples include firewalls, load

balancers, application gateways, accelerators, etc. With the advent

of software switching, and more importantly, network functions

virtualization (NFV), traditional hardware switching elements and

middleboxes are being realized using software running on generic

compute platforms (e.g., a virtual machine, or VM).

Thus, the “data plane” that packets traverse on end-to-end paths

now includes—in addition to hardware L2/L3 devices and links—a

variety of software components that reside within compute servers’

virtualization stacks and within the VMs running various middle-

box software. Examples include physical and virtual NICs and

their drivers, various packet processing routines in hypervisors and

within middlebox logic, virtual switches, hypervisor I/O handlers,

host and guest network stacks, etc. We refer to this new portion of

the data plane as the software data plane.
Our community has developed a variety of innovative tools and

frameworks for diagnosing problems in hardware dataplanes. Ex-

amples include traceroute, path MTU discovery [5], available ca-

pacity detection [34], tomography [13], etc. Unfortunately, we

don’t have similar tools for software data planes.

In fact, software data planes present new challenges to diagno-

sis. Because they span a variety of software components running

on shared compute resources, where each component can perform

fairly sophisticated actions, software data planes are much more

susceptible to a range of subtle performance problems. We argue

that there are at least three classes of performance problems—those

arising due to mis-allocation of resources to software data plane

elements, contention amongst elements for shared resources, and

buggy design/implementation. Such problems either don’t arise

frequently in traditional hardware data planes (e.g., implementa-

tions with performance bugs are rare), or they are simpler to diag-

nose because only a handful of resources are allocated (e.g., band-

width and router buffering, vs. CPU, disk, memory, network etc. in

software data planes) and contention observed manifests at a small

number of locations (e.g., buffers building up or link utilization

growing vs. drops/buffering at a multitude of possible locations in

the virtualization stack—See Section 2.1). Furthermore, because

of stateful packet processing, problems arising in one middlebox

may quickly propagate up- or down-stream to other middleboxes

on an end-to-end path, which complicates accurate diagnosis of

root causes (See Section 2.2).We design a general system, called PerfSight, for accurate and

quick diagnosis of a broad variety of performance problems that

may arise in current and future software data planes. Our approach

is rooted in viewing the software data plane as a pipeline of ele-
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Abstract
Middleboxes provide key security and performance

guarantees in networks. Unfortunately, the dynamic traf-
fic modifications they induce make it difficult to reason
about network management tasks such as access control,
accounting, and diagnostics. This also makes it difficult
to integrate middleboxes into SDN-capable networks and
leverage the benefits that SDN can offer.

In response, we develop the FlowTags architecture.
FlowTags-enhanced middleboxes export tags to provide
the necessary causal context (e.g., source hosts or in-
ternal cache/miss state). SDN controllers can configure
the tag generation and tag consumption operations using
new FlowTags APIs. These operations help restore two
key SDN tenets: (i) bindings between packets and their
“origins,” and (ii) ensuring that packets follow policy-
mandated paths.

We develop new controller mechanisms that leverage
FlowTags. We show the feasibility of minimally extend-
ing middleboxes to support FlowTags. We also show that
FlowTags imposes low overhead over traditional SDN
mechanisms. Finally, we demonstrate the early promise
of FlowTags in enabling new verification and diagnosis
capabilities.

1 Introduction
Many network management tasks are implemented us-
ing custom middleboxes, such as firewalls, NATs, prox-
ies, intrusion detection and prevention systems, and
application-level gateways [53, 54]. Even though mid-
dleboxes offer key performance and security benefits,
they introduce new challenges: (1) it is difficult to ensure
that “service-chaining” policies (e.g., web traffic should
be processed by a proxy and then a firewall) are imple-
mented correctly [49, 50], and (2) they hinder other man-
agement functions such as performance debugging and
forensics [56]. Our conversations with enterprise opera-
tors suggest that these problems get further exacerbated
with the increasing adoption of virtualized/multi-tenant
deployments.

The root cause of this problem is that traffic is
modified by dynamic and opaque middlebox behav-
iors. Thus, the promise of software-defined network-

ing (SDN) to enforce and verify network-wide policies
(e.g., [39, 40, 44]) does not extend to networks with mid-
dleboxes. Specifically, middlebox actions violate two
key SDN tenets [24, 32]:
1. ORIGINBINDING: There should be a strong binding

between a packet and its “origin” (i.e., the network
entity that originally created the packet);

2. PATHSFOLLOWPOLICY: Explicit policies should de-
termine the paths that packets follow.1

For instance, NATs and load balancers dynamically
rewrite packet headers, thus violating ORIGINBINDING.
Similarly, dynamic middlebox actions, such as responses
served from a proxy’s cache, may violate PATHSFOL-
LOWPOLICY. (We elaborate on these examples in §2.)

Some might argue that middleboxes can be eliminated
(e.g., [26, 54]), or that their functions can be equiv-
alently provided in SDN switches (e.g., [41]), or that
we should replace proprietary boxes by open solutions
(e.g, [20, 52]). While these are valuable approaches,
practical technological and business concerns make them
untenable, at least for the foreseeable future. First, there
is no immediate roadmap for SDN switches to support
complex stateful processing. Second, enterprises already
have a significant deployed infrastructure that is unlikely
to go away. Furthermore, these solutions do not funda-
mentally address ORIGINBINDING and PATHSFOLLOW-
POLICY; they merely shift the burden elsewhere.

We take a pragmatic stance that we should attempt to
integrate middleboxes into the SDN fold as “cleanly” as
possible. Thus, our focus in this paper is to systemati-
cally (re-)enforce the ORIGINBINDING and PATHSFOL-
LOWPOLICY tenets, even in the presence of dynamic
middlebox actions. We identify flow tracking as the key
to policy enforcement.2 That is, we need to reliably asso-
ciate additional contextual information with a traffic flow
as it traverses the network, even if packet headers and

1A third SDN tenet, HIGHLEVELNAMES, states that network poli-
cies should be expressed in terms of high-level names. We do not ad-
dress it in this work, mostly to retain backwards compatibility with
current middlebox configuration APIs. We believe that HIGHLEVEL-
NAMES can naturally follow once we restore the ORIGINBINDING
property.

2We use the term “flow” in a general sense, not necessarily to refer
to an IP 5-tuple.
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ABSTRACT

We present a Netw
ork Address Transla

tor (NAT) writte
n in C and

proven to be semantically correct accordin
g to RFC 3022, as well

as crash-free an
d memory-safe. There

exists a lot of re
cent work

on network veri�cation, but
it mostly assumes models of network

functions and proves propertie
s speci�c to network con�guration,

such as reachabil
ity and absence o

f loops. Our proo
f applies directly

to the C code of a networ
k function, and it

demonstrates the abs
ence

of implementation bugs. Prior work
argued that this is not fe

asible

(i.e., that verifyi
ng a real, stateful n

etwork function written in C

does not scale) b
ut we demonstrate otherw

ise: NAT is one of the

most popular netw
ork functions and maintains per-�ow

state that

needs to be prop
erly updated and

expired, which is a typical sourc
e

of veri�cation challenges. We tackle the scala
bility challenge w

ith a

new combination of symbolic execution and proof checking u
sing

separation logic;
this combinationmatcheswell the ty

pical structure

of a network function. We then demonstrate that for
mally proven

correctness in this case does no
t come at the cost of p

erformance.

The NAT code, proof toolc
hain, and proofs are availa

ble at [58].
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1 INTRODUCTION

This work is about designin
g and implementing software

network

functions (NFs)
that are proven

to be secure and correct. Softwar
e

NFs have alway
s been popular in low-rate environ

ments, such as

home gateways or w
ireless access po

ints. More recently, the
y have

also appeared in
experimental IP routers [20] and

industrial mid-

dleboxes [8] tha
t support multi-Gbps line ra

tes. Moreover, we are

witnessing a push for virtual netw
ork functions that c

an be de-

ployed on general-purpose
platforms on demand, much like virtual

machines are bein
g deployed in clouds.
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There exists a lot of prior wor
k on network veri�cation, but

,

to the best of our
knowledge, non

e that reasons a
bout both the

security and semantic correctnes
s of NF implementations. Most

of that work relies on models of NFs tha
t are di�erent fr

om their

implementations, hence
it cannot reason

about the latter (
although

we should note that NF models can be very e�ective in reasoning

about network con�guration [24, 25, 30–32, 3
8, 39, 46, 52, 55,

59]).

One exception is Dobrescu et al. [19], which
introduced the notion

of software data-plane veri�cation, and
which proves low-leve

l

properties for N
F implementations written

in Click (i.e., C++) [35].

That work, howe
ver, cannot prov

e semantic correctness
of stateful

NFs, because it does not reas
on about state. For

instance, even

though Dobrescu
et al. prove crash

-freedom and bounded exe
cution

for a speci�c NAT implementation, they cannot prove that it is

semantically correct, due to not having a wa
y to reason about the

content of the �o
w table (e.g., wheth

er entries are add
ed or expired

correctly).
Our contribution

is a NAT function, written
in C and using the

DPDK packet-processin
g library [21], wh

ich we prove to im
plement

the semantics speci�ed
in RFC 3022 [53] and to be crash-free

and

memory-safe. We chose this par
ticular NF becau

se it is arguably

one of the most popular one
s, yet it has prov

en hard to get right

over time: the NAT on various Cisco de
vices can be crashed [17] o

r

hung [15] using
carefully crafted inputs; similar problems exist in

Juniper’s NAT [16], the NAT in Windows Server [
40], and NATs

based on NetFilter [18]. M
oreover, like many NFs, NATs maintain

per-�ow state that needs t
o be properly up

dated and expire
d, which

is a typical sourc
e of veri�cation

challenges.

We implemented our NAT in C, because this is the language

typically used for high-perform
ance packet proc

essing, and it ben-

e�ts from a rich and stable ecosystem
that includes DP

DK. Given

that we anyway
wrote our NAT

from scratch—and ou
r approach,

in general, require
s refactoring—w

e did consider using
a more

veri�cation-frien
dly language. In the end, howeve

r, we considered

that NF develope
rs are more likely to adopt our toolse

t if it allows

them to code in a familiar language an
d leverage existing

expertise

and tools, even if they have to follow extra constraints (suc
h as

using a speci�c l
ibrary of data structure

s) and annotate their co
de.

Recent work argues that verif
ying the C implementation of a real,

stateful NF is inf
easible with symbolic execution [55], but we show

that it can be done if symbolic execution
is combined with other

veri�cation techniques.

The rationale be
hind our approach is that di�erent

veri�cation

techniques are b
est suited for di�

erent types of co
de. The beauty o

f

symbolic execution
[9] lies in its ease of use: it

enables automatic

code analysis, he
nce can be used by devel

opers without ve
ri�cation

1
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Abstract

Software dataplanes are emerging as an alternative to tra-

ditional hardware switches and routers, promising pro-

grammability and short time to market. These advan-

tages are set against the risk of disrupting the network

with bugs, unpredictable performance, or security vul-

nerabilities. We explore the feasibility of verifying soft-

ware dataplanes to ensure smooth network operation.

For general programs, verifiability and performance are

competing goals; we argue that software dataplanes are

different—we can write them in a way that enables veri-

fication and preserves performance. We present a verifi-

cation tool that takes as input a software dataplane, writ-

ten in a way that meets a given set of conditions, and

(dis)proves that the dataplane satisfies crash-freedom,

bounded-execution, and filtering properties. We evaluate

our tool on stateless and simple stateful Click pipelines;

we perform complete and sound verification of these

pipelines within tens of minutes, whereas a state-of-the-

art general-purpose tool fails to complete the same task

within several hours.

1 Introduction

Software dataplanes are emerging from both re-

search [17,26,27,37] and industry [2,3] backgrounds as a

more flexible alternative to traditional hardware switches

and routers. They promise to cut network provisioning

costs by half, by enabling dynamic allocation of packet-

processing tasks to network devices [42]; or to turn the

Internet into an evolvable architecture, by enabling con-

tinuous functionality update of devices located at strate-

gic network points [41].

Flexibility, however, typically comes at the cost of re-

liability. A system of non-trivial size that is subject to

frequent updates is typically plagued by behavior and

performance bugs, as well as security vulnerabilities. It

makes sense then that network operators are skeptical

about the vision of software dataplanes that are contin-

uously reprogrammed in response to user and operator

needs—as they were skeptical a decade ago toward ac-

tive networking. The question is, has anything changed?

Have software verification techniques matured enough to

enable us to reason about the behavior and performance

of software dataplanes? Or must we accept that fre-

quently reprogrammed software dataplanes will always

be less reliable than their static hardware counterparts?

The subject of this work is a verification tool that

takes as input the executable binary of a software data-

plane and proves that it does (or does not) satisfy a target

property; if the target property is not satisfied, the tool

should provide counter-examples, i.e., packet sequences

that cause the property to be violated. Developers of

packet-processing apps could use such a tool to produce

software with guarantees, e.g., that never seg-faults or

kernel-panics, no matter what traffic it receives. Network

operators could use the tool to verify that a new packet-

processing app they are considering for deployment will

not destabilize their network, e.g., it will not introduce

more than some known fixed amount of per-packet la-

tency. One might even envision markets for packet-

processing apps—similar to today’s smartphone/tablet

app markets—where network operators would shop for

new code to “drop” into their network devices. The op-

erators of such markets would need a verification tool to

certify that their apps will not disrupt their customers’

networks.

For general programs, verifiability and performance

are competing goals. Proving properties of real programs

(unlike searching for bugs) remains an elusive goal for

the systems community, at least for programs that consist

of more than a few hundred lines of code and are writ-

ten in a low-level language like C++. A high-level lan-

guage like Haskell can guarantee certain properties (like

the impossibility of buffer overflow) by construction, but

typically at the cost of performance.

For software dataplanes, it does not have to be this

way: we will argue that we can write them in a way that

enables verification and preserves performance. The key

question then is: what defines a “software dataplane” and

how much more restricted is it than a “general program”?

how much do we need to restrict our dataplane program-

ming model so that we can reconcile verifiability with

performance?

There are different ways to approach this question:

one could start from a restricted, easily verifiable model

and broaden it as much as possible without losing verifi-

ability; or, one could start from a popular, but not verifi-

able model and restrict it as little as necessary to achieve

verifiability. We chose the latter in an effort to be prac-

tical. We present in this paper the result of working it-

eratively on two tasks: designing a verification tool for

software dataplanes, while trying to identify a minimal

set of conditions that a software dataplane must meet in

order to be verifiable.
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Abstract

Recent work has made great progress in verifying the for-

warding correctness of networks [26–28, 35]. However,

these approaches cannot be used to verify networks con-

taining middleboxes, such as caches and firewalls, whose

forwarding behavior depends on previously observed traf-

fic. We explore how to verify reachability properties for

networks that include such “mutable datapath” elements,

both for the original network and in the presence of failures.

The main challenge lies in handling large and complicated

networks. We achieve scaling by developing and lever-

aging the concept of slices, which allow network-wide

verification to only require analyzing small portions of the

network. We show that with slices the time required to

verify an invariant on many production networks is inde-

pendent of the size of the network itself.1 IntroductionNetwork operators have long relied on best-guess

configurations and a “we’ll fix it when it breaks” approach.

However, as networking matures as a field, and institutions

increasingly expect networks to provide reachability,

isolation, and other behavioral invariants, there is growing

interest in developing rigorous verification tools that

can check whether these invariants are enforced by the

network configuration.The first generation of such tools [26–28, 35] check

reachability and isolation invariants in near-real time, but

assume that network devices have “static datapaths, ” i.e.,

their forwarding behavior is set by the control plane and

not altered by observed traffic. This assumption is entirely

sufficient for networks of routers but not for networks that

contain middleboxes with “mutable datapaths” whose for-

warding behavior may depend on the entire packet history

they have seen. Examples of such middleboxes include fire-

walls that allow end hosts to establish flows to the outside

world through “hole punching” and network optimizers

that cache popular content. Middleboxes are prevalent – in

fact, they constitute as much as a third of network devices

in enterprise networks [49] – and expected to become more

so with the rise of Network Function Virtualization (NFV)

because the latter makes it easy to deploy additional middle-

boxes without changes in the physical infrastructure [13].

Given their complexity and prevalence, middleboxes are

the cause of many network failures; for instance, 43% of a

network provider’s failure incidents involved middleboxes,

and between 4% and 15% of these incidents were the

result of middlebox misconfiguration [41].
Our goal is to reduce such misconfigurations by

extending verification to large networks that contain

middleboxes with mutable datapaths. In building our

system for verifying reachability and isolation properties

in mutable networks – which we call VMN (for verifying

mutable networks) – we do not take the direct approach

of attempting to verify middlebox code itself, and then

extend this verification to the network as a whole, for two

reasons. First, such an approach does not scale to large

networks. The state-of-the-art in verification is still far

from able to automatically analyze the source code or

executable of most middleboxes, let alone the hundreds

of interconnected devices that it interacts with [51]. Thus,

verifying middlebox code directly is practically infeasible.

Second, middlebox code does not always work with

easily verified abstractions. For example, some IDSes

attempt to identify suspicious traffic. No method can

possibly verify whether their code is successful in

identifying all suspicious traffic because there is no

accepted definition of what constitutes suspicious. Thus,

verifying such middlebox code is conceptually impossible.

Faced with these difficulties, we return to the problem

operators want to solve. They recognize that there may

be imprecision in identifying suspicious traffic, but they

want to ensure that all traffic that the middlebox identifies

as being suspicious is handled appropriately (e.g., by

being routed to a scrubber for further analysis). The first

problem – perfectly identifying suspicious traffic – is

not only ill-defined, it is not controlled by the operator

(in the sense that any errors in identification are beyond

the reach of the operator’s control). The second problem

– properly handling traffic considered suspicious by a

middlebox – is precisely what an operator’s configuration,

or misconfiguration, can impact.
The question, then is how to abstract away unnecessary

complexity so that we can provide useful answers to

operators. We do so by leveraging two insights. First,
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Abstract

We present SymNet, a network static analysis tool based on

symbolic execution. SymNet injects symbolic packets and

tracks their evolution through the network. Our key novelty

is SEFL, a language we designed for expressing data plane

processing in a symbolic-execution friendly manner.

SymNet statically analyzes an abstract data plane model

that consists of the SEFL code for every node and the links

between nodes. SymNet can check networks containing routers

with hundreds of thousands of prefixes and NATs in seconds,

while verifying packet header memory-safety and covering

network functionality such as dynamic tunneling, stateful

processing and encryption. We used SymNet to debug mid-

dlebox interactions from the literature, to check properties

of our department’s network and the Stanford backbone.

Modeling network functionality is not easy. To aid users

we have developed parsers that automatically generate SEFL

models from router and switch tables, firewall configura-

tions and arbitrary Click modular router configurations. The

parsers rely on prebuilt models that are exact and fast to an-

alyze. Finally, we have built an automated testing tool that

combines symbolic execution and testing to check whether

the model is an accurate representation of the real code.

CCS Concepts

•Networks ! Network management; •Software and its

engineering ! Formal software verification;
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1. INTRODUCTION

Modern networks deploy a mix of traditional switches and

routers alongside more complex network functions includ-

ing security appliances, NATs and tunnel endpoints. Un-

derstanding end-to-end properties such as TCP reachability
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or distributed firewall policy compliance is difficult before

deploying the network configuration, and deployment can

disrupt live traffic. Dynamic testing (packet generation and

tracing) can only catch common issues (e.g. lack of connec-

tivity) but does not scale to large networks.

Static analysis of network data planes allows cheap, fast

and exhaustive verification of deployed networks for packet

reachability, absence of loops, bidirectional forwarding, etc.

We do not aim to verify the control plane (e.g. routing pro-

tocols, SDN controllers etc.). Control plane verification is a

hard problem that includes checking the correctness of the

control plane configuration [8, 9, 4], proving convergence

after link additions or failures and characterizing the tran-

sient behavior until convergence is reached [2, 11]. We as-

sume the control plane configuration is stable and the control

plane has converged and analyze the resulting data plane.

All static analysis tools take as input a model of the pro-

cessing performed by each network box, the links between

boxes and a snapshot of the forwarding state, and are able

to answer queries about the network without resorting to dy-

namic testing [23, 14, 19, 20, 21]. What is the best modeling

language for networks? If possible, we should simply use

the implementation of network boxes (e.g. a C program), as

this is the most accurate and is easiest to use. If we view

packets as variables being passed between different network

boxes, static network analysis becomes akin to software test-

ing. This is a problem that has been studied for decades, and

the leading approach is to use symbolic execution [3].

Symbolic execution is really powerful: it explores all pos-

sible paths through the program, providing possible values

for each (symbolic) variable at every point. In the context of

static network analysis, the power of symbolic execution lies

in its ability to relate the outgoing packets to the incoming

ones: even if all the incoming packet headers are unknown,

a symbolic execution engine can detect which header fields

are allowed in each part of the network, which ones are in-

variant, and can tell how the modified headers depend on the

input when they are changed. Unfortunately, symbolic exe-

cution scales poorly: its complexity is roughly exponential

in the number of branching instructions (e.g. “if” condition-

als) in the analyzed program. Applying symbolic execution

to actual network code quickly leads to untenable execution

times, as shown in [6]. To cut complexity, we must run sym-

bolic execution on models of the code, rather than the code

itself. While it is natural to program the models also in C, as

previous works do [6, 7], we show that C is fundamentally

ill suited for network symbolic execution, and the resulting

models are too complex to analyze.
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mOS: A Reusable Networking Stack for Flow Monitoring Middleboxes
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School of Electrical Engineering, KAISTAbstractStateful middleboxes, such as intrusion detection systems

and application-level firewalls, have provided key func-

tionalities in operating modern IP networks. However,

designing an efficient middlebox is challenging due to

the lack of networking stack abstraction for TCP flow

processing. Thus, middlebox developers often write the

complex flow management logic from scratch, which is

not only prone to errors, but also wastes efforts for similar

functionalities across applications.
This paper presents the design and implementation of

mOS, a reusable networking stack for stateful flow pro-

cessing in middlebox applications. Our API allows de-

velopers to focus on the core application logic instead

of dealing with low-level packet/flow processing them-

selves. Under the hood, it implements an efficient event

system that scales to monitoring millions of concurrent

flow events. Our evaluation demonstrates that mOS en-

ables modular development of stateful middleboxes, often

significantly reducing development efforts represented by

the source lines of code, while introducing little perfor-

mance overhead in multi-10Gbps network environments.

1 IntroductionNetwork appliances or “middleboxes”, such as intrusion

detection systems and application accelerators, are widely

deployed in modern networks [59]. With the trend towards

commodity server-based middleboxes [59] and network

functions virtualization [38], these middlebox applications

are commonly implemented in software. Middlebox de-

velopment, however, still remains an onerous task. It often

requires handling complex flow-level states and events at

layer 4 or above, such as connection state management

and flow reassembly. The key challenge is that middlebox

developers have to build these low-level flow management

features from scratch, due to lack of common abstrac-

tions and well-defined APIs. This is in stark contrast to

end-host applications programming, where application

programmers rely on a set of networking system calls,

such as the Berkeley socket API, that hides the details.

Existing socket APIs focus on end-to-end semantics and

transferring application (layer 7) data. Unfortunately, they

are not flexible enough to monitor session state, packet

loss or retransmission patterns at lower layers. In contrast,

popular packet processing frameworks, such as Click [46],

DPDK [4], PacketShader IOEngine [40], and netmap [57],

provide useful features for packet-level I/O processing, but

lack flow-level abstraction required for stateful middlebox

applications. A huge semantic gap exists between the two

commonly-used abstractions. Thus, the state-of-the art

middlebox programming remains that each application

implements low-level flow-processing features in addition

to the application-specific logic. This practice prevents

code reuse and makes it challenging to understand the

details of implementation. For example, we find that two

popular NIDS implementations, Snort and Suricata, are

drastically different, although they expose similar flow

management features [19, 58].
This work presents the design and implementation of

mOS, a reusable networking stack and an API for modular

development of flow-processing middlebox applications.

The design of mOS is based upon two principles. First,

the API should facilitate a clear separation between low-

level packet/flow processing and application-specific logic.

While tight integration of the two layers might benefit per-

formance, it easily becomes a source of complexity and

a maintenance nightmare. In contrast, a reusable middle-

box networking stack allows developers to focus on core

middlebox application logic. Second, the middlebox

networking API should provide programming constructs

that natively support user-definable flow events for custom

middlebox operations. Most middlebox operations are

triggered by a set of custom flow events—being able to

express them via a well-defined API is the key to modular

middlebox programming. For example, a middlebox ap-

plication that detects malicious payload in retransmission

should be able to easily express the condition for the event

and provide a custom action as its event handler. Building

middlebox applications as a synthesis of event processing

significantly improves the code readability while hiding

the details for tracking complex conditions.
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ABSTRACT
Existing network service chaining frameworks are based on
a “packet-centric” model where each NF in a chain is given
every packet for processing. This approach becomes both
ine�cient and inconvenient for more complex network func-
tions that operate at higher levels of the protocol stack. We
propose Microboxes, a novel service chaining abstraction
designed to support transport- and application-layer middle-
boxes, or even end-system like services. Simply including a
TCP stack in an NFV platform is insu�cient because there is
awide spectrum ofmiddlebox types–fromNFs requiring only
simple TCP bytestream reconstruction to full endpoint termi-
nation. By exposing a publish/subscribe-based API for NFs
to access packets or protocol events as needed, Microboxes
eliminates redundant processing across a chain and enables a
modular design. Our implementation on a DPDK-based NFV
framework can double throughput by consolidating stack op-
erations and provide a 51% throughput gain by customizing
TCP processing to the appropriate level.
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Figure 1: Repeated TCP stack processing in a chain of
mOS NFs can cause unnecessarily high delay.

1 INTRODUCTION
Today’s enterprise and wide-area networks are �lled with
middleboxes [27] providing a wide range of functionality
from simple �rewalls to complex Evolved Packet Core (EPC)
functions in cellular networks. Network Function Virtual-
ization (NFV) platforms provide high performance packet
processing by leveraging kernel bypass I/O libraries such
as DPDK [1] and netmap [25]. However, these systems are
packet-centric: they focus on providing e�cient movement
of packets through a chain of network functions that oper-
ate on each packet as it arrives. While this model can make
sense for simple layer-2/3 processing, it becomes ine�cient
and inconvenient when building more complex functions
operating at higher levels of the protocol stack.

Network functions that operate at the transport layer need
to perform additional processing such as TCP bytestream
reconstruction. This is a relatively heavyweight function
since it involves copying packet data into a bu�er, an action
that is avoided in many layer-2/3 middleboxes that rely on
"zero-copy" to achieve high throughput. High performance,
user-space TCP stacks [12, 13] can be used by NFs to simplify
this operation, but these libraries must be used individually
by each NF, resulting in redundant computation if a chain of
functions each perform TCP processing.
To illustrate the high cost of redundant TCP processing,

Figure 1 shows the processing latency for a chain of NFs that
perform TCP bytestream reconstruction using mOS [12] or
simply forward individual packets at layer 2 (fwd in �gure);
to maximize performance, each NF runs on its own core. As
the chain length increases, the latency for theNFs performing
TCP processing increases substantially compared to that for
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Abstract

The move from hardware middleboxes to software network
functions, as advocated by NFV, has proven more challeng-
ing than expected. Developing new NFs remains a tedious
process, requiring that developers repeatedly rediscover
and reapply the same set of optimizations, while current
techniques for providing isolation between NFs (using
VMs or containers) incur high performance overheads. In
this paper we describe NetBricks, a new NFV framework
that tackles both these problems. For building NFs we take
inspiration from modern data analytics frameworks (e.g.,
Spark and Dryad) and build a small set of customizable net-
work processing elements. We also embrace type checking
and safe runtimes to provide isolation in software, rather
than rely on hardware isolation. NetBricks provides the
same memory isolation as containers and VMs, without
incurring the same performance penalties. To improve I/O
efficiency, we introduce a novel technique called zero-copy
software isolation.

1 Introduction

Networks today are responsible for more than just for-
warding packets, this additional functionality is imple-
mented using “middleboxes”. Middleboxes implement a
wide range of functionality, including security (e.g., fire-
walls, IDS/IPSs), performance (e.g., caches, WAN opti-
mizers) and support for new applications and protocols
(e.g., TLS proxies). Middlebox functionality was initially
provided by dedicated hardware devices, and is in wide de-
ployment today. A 2012 survey [44] found that in many net-
works there are equal numbers of middleboxes, switches
and routers.

Approximately four years ago, many large carriers ini-
tiated an effort, called Network Function Virtualization
(NFV), to replace hardware middleboxes with software
implementations running in VMs [10]. This approach en-
abled middlebox functionality (called Network Functions
or NFs) to be run on commodity servers and was supposed
to bring several advantages including: (a) simplifying de-
ployment, since deploying new functionality merely re-
quires software changes; (b) simpler management using

standard tools for managing VMs; (c) faster development,
which now requires writing software that runs on com-
modity hardware; and (d) reduced costs by consolidating
several NFs on a single machine. However, despite these
promised advances, there has been little progress towards
large-scale NF deployments. Our discussions with three
major carriers revealed that they are only just beginning
small scale test deployments (with 10-100s of customers)
using simple NFs e.g., firewalls and NATs.

The move from hardware middleboxes to software NFs
was supposed to speed innovation, so why has progress
been so slow? We believe this delay is because traditional
approaches for both building and running NFs are a poor
match for carrier networks, which have the following re-
quirements: performance, NF deployments should be able
to provide per-packet latencies on the order of 10s of µs,
and throughput on the order of 10s of Gbps; efficiency,
it should be possible to consolidate several NFs on a sin-
gle machine; support for chaining, since each packet is
typically processed by a sequence of NFs; the flexibility
to run NFs manufactured by multiple vendors; and the
ability to process packets from multiple tenants while pro-
viding some degree of isolation between them. Note that
because many carriers provide middlebox services to their
customers, the NFs supported by carriers include those that
are commonly found in enterprise environments (e.g., fire-
walls, NATs, IPS/IDSs, WAN optimizers, etc.) in addition
to ones specific to carriers (e.g., EPC, carrier-grade NAT).

Why do current tools for building and running NFs fall
short of these requirements? In terms of building NFs, tools
need to support both rapid-development (achieved through
the use of high-level abstractions) and high performance
(often requiring low-level optimizations). In other appli-
cation domains, programming frameworks and models
have been developed to allow developers to use high-level
abstractions while the framework optimizes the implemen-
tations of those abstractions (ensuring high performance);
the rise of data analytic frameworks (e.g., Hadoop, Spark)
is an example of this phenomenon. However, the state-of-
the-art for NFV is much more primitive. There are program-
ming models such as Click [27] that do not provide easily
customizable low-level optimizations, and libraries such as
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mOS: A Reusable Networking Stack for Flow Monitoring Middleboxes
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School of Electrical Engineering, KAISTAbstractStateful middleboxes, such as intrusion detection systems

and application-level firewalls, have provided key func-

tionalities in operating modern IP networks. However,

designing an efficient middlebox is challenging due to

the lack of networking stack abstraction for TCP flow

processing. Thus, middlebox developers often write the

complex flow management logic from scratch, which is

not only prone to errors, but also wastes efforts for similar

functionalities across applications.
This paper presents the design and implementation of

mOS, a reusable networking stack for stateful flow pro-

cessing in middlebox applications. Our API allows de-

velopers to focus on the core application logic instead

of dealing with low-level packet/flow processing them-

selves. Under the hood, it implements an efficient event

system that scales to monitoring millions of concurrent

flow events. Our evaluation demonstrates that mOS en-

ables modular development of stateful middleboxes, often

significantly reducing development efforts represented by

the source lines of code, while introducing little perfor-

mance overhead in multi-10Gbps network environments.

1 IntroductionNetwork appliances or “middleboxes”, such as intrusion

detection systems and application accelerators, are widely

deployed in modern networks [59]. With the trend towards

commodity server-based middleboxes [59] and network

functions virtualization [38], these middlebox applications

are commonly implemented in software. Middlebox de-

velopment, however, still remains an onerous task. It often

requires handling complex flow-level states and events at

layer 4 or above, such as connection state management

and flow reassembly. The key challenge is that middlebox

developers have to build these low-level flow management

features from scratch, due to lack of common abstrac-

tions and well-defined APIs. This is in stark contrast to

end-host applications programming, where application

programmers rely on a set of networking system calls,

such as the Berkeley socket API, that hides the details.

Existing socket APIs focus on end-to-end semantics and

transferring application (layer 7) data. Unfortunately, they

are not flexible enough to monitor session state, packet

loss or retransmission patterns at lower layers. In contrast,

popular packet processing frameworks, such as Click [46],

DPDK [4], PacketShader IOEngine [40], and netmap [57],

provide useful features for packet-level I/O processing, but

lack flow-level abstraction required for stateful middlebox

applications. A huge semantic gap exists between the two

commonly-used abstractions. Thus, the state-of-the art

middlebox programming remains that each application

implements low-level flow-processing features in addition

to the application-specific logic. This practice prevents

code reuse and makes it challenging to understand the

details of implementation. For example, we find that two

popular NIDS implementations, Snort and Suricata, are

drastically different, although they expose similar flow

management features [19, 58].
This work presents the design and implementation of

mOS, a reusable networking stack and an API for modular

development of flow-processing middlebox applications.

The design of mOS is based upon two principles. First,

the API should facilitate a clear separation between low-

level packet/flow processing and application-specific logic.

While tight integration of the two layers might benefit per-

formance, it easily becomes a source of complexity and

a maintenance nightmare. In contrast, a reusable middle-

box networking stack allows developers to focus on core

middlebox application logic. Second, the middlebox

networking API should provide programming constructs

that natively support user-definable flow events for custom

middlebox operations. Most middlebox operations are

triggered by a set of custom flow events—being able to

express them via a well-defined API is the key to modular

middlebox programming. For example, a middlebox ap-

plication that detects malicious payload in retransmission

should be able to easily express the condition for the event

and provide a custom action as its event handler. Building

middlebox applications as a synthesis of event processing

significantly improves the code readability while hiding

the details for tracking complex conditions.
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ABSTRACT
Existing network service chaining frameworks are based on
a “packet-centric” model where each NF in a chain is given
every packet for processing. This approach becomes both
ine�cient and inconvenient for more complex network func-
tions that operate at higher levels of the protocol stack. We
propose Microboxes, a novel service chaining abstraction
designed to support transport- and application-layer middle-
boxes, or even end-system like services. Simply including a
TCP stack in an NFV platform is insu�cient because there is
awide spectrum ofmiddlebox types–fromNFs requiring only
simple TCP bytestream reconstruction to full endpoint termi-
nation. By exposing a publish/subscribe-based API for NFs
to access packets or protocol events as needed, Microboxes
eliminates redundant processing across a chain and enables a
modular design. Our implementation on a DPDK-based NFV
framework can double throughput by consolidating stack op-
erations and provide a 51% throughput gain by customizing
TCP processing to the appropriate level.
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Figure 1: Repeated TCP stack processing in a chain of
mOS NFs can cause unnecessarily high delay.

1 INTRODUCTION
Today’s enterprise and wide-area networks are �lled with
middleboxes [27] providing a wide range of functionality
from simple �rewalls to complex Evolved Packet Core (EPC)
functions in cellular networks. Network Function Virtual-
ization (NFV) platforms provide high performance packet
processing by leveraging kernel bypass I/O libraries such
as DPDK [1] and netmap [25]. However, these systems are
packet-centric: they focus on providing e�cient movement
of packets through a chain of network functions that oper-
ate on each packet as it arrives. While this model can make
sense for simple layer-2/3 processing, it becomes ine�cient
and inconvenient when building more complex functions
operating at higher levels of the protocol stack.

Network functions that operate at the transport layer need
to perform additional processing such as TCP bytestream
reconstruction. This is a relatively heavyweight function
since it involves copying packet data into a bu�er, an action
that is avoided in many layer-2/3 middleboxes that rely on
"zero-copy" to achieve high throughput. High performance,
user-space TCP stacks [12, 13] can be used by NFs to simplify
this operation, but these libraries must be used individually
by each NF, resulting in redundant computation if a chain of
functions each perform TCP processing.
To illustrate the high cost of redundant TCP processing,

Figure 1 shows the processing latency for a chain of NFs that
perform TCP bytestream reconstruction using mOS [12] or
simply forward individual packets at layer 2 (fwd in �gure);
to maximize performance, each NF runs on its own core. As
the chain length increases, the latency for theNFs performing
TCP processing increases substantially compared to that for
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Abstract

The move from hardware middleboxes to software network
functions, as advocated by NFV, has proven more challeng-
ing than expected. Developing new NFs remains a tedious
process, requiring that developers repeatedly rediscover
and reapply the same set of optimizations, while current
techniques for providing isolation between NFs (using
VMs or containers) incur high performance overheads. In
this paper we describe NetBricks, a new NFV framework
that tackles both these problems. For building NFs we take
inspiration from modern data analytics frameworks (e.g.,
Spark and Dryad) and build a small set of customizable net-
work processing elements. We also embrace type checking
and safe runtimes to provide isolation in software, rather
than rely on hardware isolation. NetBricks provides the
same memory isolation as containers and VMs, without
incurring the same performance penalties. To improve I/O
efficiency, we introduce a novel technique called zero-copy
software isolation.

1 Introduction

Networks today are responsible for more than just for-
warding packets, this additional functionality is imple-
mented using “middleboxes”. Middleboxes implement a
wide range of functionality, including security (e.g., fire-
walls, IDS/IPSs), performance (e.g., caches, WAN opti-
mizers) and support for new applications and protocols
(e.g., TLS proxies). Middlebox functionality was initially
provided by dedicated hardware devices, and is in wide de-
ployment today. A 2012 survey [44] found that in many net-
works there are equal numbers of middleboxes, switches
and routers.

Approximately four years ago, many large carriers ini-
tiated an effort, called Network Function Virtualization
(NFV), to replace hardware middleboxes with software
implementations running in VMs [10]. This approach en-
abled middlebox functionality (called Network Functions
or NFs) to be run on commodity servers and was supposed
to bring several advantages including: (a) simplifying de-
ployment, since deploying new functionality merely re-
quires software changes; (b) simpler management using

standard tools for managing VMs; (c) faster development,
which now requires writing software that runs on com-
modity hardware; and (d) reduced costs by consolidating
several NFs on a single machine. However, despite these
promised advances, there has been little progress towards
large-scale NF deployments. Our discussions with three
major carriers revealed that they are only just beginning
small scale test deployments (with 10-100s of customers)
using simple NFs e.g., firewalls and NATs.

The move from hardware middleboxes to software NFs
was supposed to speed innovation, so why has progress
been so slow? We believe this delay is because traditional
approaches for both building and running NFs are a poor
match for carrier networks, which have the following re-
quirements: performance, NF deployments should be able
to provide per-packet latencies on the order of 10s of µs,
and throughput on the order of 10s of Gbps; efficiency,
it should be possible to consolidate several NFs on a sin-
gle machine; support for chaining, since each packet is
typically processed by a sequence of NFs; the flexibility
to run NFs manufactured by multiple vendors; and the
ability to process packets from multiple tenants while pro-
viding some degree of isolation between them. Note that
because many carriers provide middlebox services to their
customers, the NFs supported by carriers include those that
are commonly found in enterprise environments (e.g., fire-
walls, NATs, IPS/IDSs, WAN optimizers, etc.) in addition
to ones specific to carriers (e.g., EPC, carrier-grade NAT).

Why do current tools for building and running NFs fall
short of these requirements? In terms of building NFs, tools
need to support both rapid-development (achieved through
the use of high-level abstractions) and high performance
(often requiring low-level optimizations). In other appli-
cation domains, programming frameworks and models
have been developed to allow developers to use high-level
abstractions while the framework optimizes the implemen-
tations of those abstractions (ensuring high performance);
the rise of data analytic frameworks (e.g., Hadoop, Spark)
is an example of this phenomenon. However, the state-of-
the-art for NFV is much more primitive. There are program-
ming models such as Click [27] that do not provide easily
customizable low-level optimizations, and libraries such as
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ZCSI: Zero Copy Soft Isolation

• VMs and containers impose cost on packets crossing 
isolation boundaries. 

• Insight: Use type checking (compile time) and 
runtime checks for isolation. 

• Isolation costs largely paid at compile time (small 
runtime costs).



NetBricks Approach

• Disallow pointer arithmetic in NF code: use safe subset of 
languages. 

• Type checks + array bounds checking provide memory 
isolation. 

• Build on unique types for packet isolation. 
– Unique types ensure references destroyed after certain calls. 
– Ensure only one NF has a reference to a packet. 
– Enables zero copy packet I/O. 

• All of these features implemented on top of Rust.



Software Isolation

• Provides memory and packet isolation. 

• Improved consolidation: multiple NFs can share a core. 
– Function call to NF (~ few cycles) vs context switch (~1µs). 

• Reduce memory and cache pressure. 
– Zero copy I/O => do not need to copy packets around.
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How to write NFs?

• Current: NF writers concerned about meeting performance 
targets 
– Low level abstractions (I/O, cache aware data structures) and low 

level code. 
• Spend lots of time optimizing how abstractions are used to 

get performance. 
• Observation: NFs exhibit common patterns: abstract and 

optimize these. 
• Analogous to what happened in other areas. 
– MPI to Map Reduce, etc.



Abstractions

Behavior of these abstractions dictated by user-defined functions (UDFs)



Example NF

• Maglev: Load balancer from Google (NSDI’16). 
• NetBricks implementation: 105 lines, 2 hours of time. 
• Comparable performance to optimized code



Conclusion

• Software isolation is necessary for high performance NFV. 
– Type checking + bound checking + unique types. 

• Performance is not anathema to high-level programming 
– Abstract operators + UDF simplify development.



Your Opinions

• Pros
– UDFs provide developers with flexibility and operators with high 

performance. 
– Reduce overhead for memory/packet isolation
• Moves away from using container and VMs
• Software memory isolation with compile-time and runtime 

checks. 
• Found value for Rust’s memory-safe programming for 

networking.
– Thorough evaluation, high performance. 
– Provides clean, easy-to-use primitives. 



Your Opinions

• Cons
– Clean-slate: requires rewriting NFs
– Potentially high CPU utilization. 
– Can VMs and containers provide stronger isolation guarantees (e.g. 

performance isolation)? What if there are bugs in NF 
implementation?

– How to achieve line-rate performance for very complex NFs?



Your Opinions

• Ideas
– Intel SGX to provide greater security and isolation?
– In-depth evaluation of security of NetBricks.
– Improving the programming interfaces. 
– Using programmable hardware for NFs
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Logistics

• Tuesday, Dec 1st: Students’ presentation (and choice)
– Sign up for a paper by the end of this week. 

• Thursday, Dec 3rd: No reading assignment, only wrap-up lecture. 

• Friday, Dec 4th: Final project report due.

• Tuesday, Dec 8th: Project presentation. Details TBA. 


