Network Functions

ECE/CS598HPN

Radhika Mittal



Logistics

Tuesday, Dec |t Students’ presentation (and choice)

— Sign up for a paper by the end of this week.

Thursday, Dec 3™ No reading assignment, only wrap-up lecture.

Friday, Dec 4™ Final project report due.

Tuesday, Dec 8™: Project presentation. Details TBA.



Conventional view of networks

|...../{Switch}-{Router Router

Data delivery is the only functionality provided
by such a network.

*contents of the slide borrowed from talks given by Aurojit Panda, NYU



Rise of middleboxes

Data delivery is not the only required functionalrty.

IDS

}— Cache 1@ WanOpt H Firewall

SSL

*contents of the slide borrowed from talks given by Aurojit Panda, NYU



Rise of middleboxes

Data delivery is not the only required functionalrty.

] IDS
}— Cache H® WanOpt Firewall
SSL

Security: identify and block unwanted traffic.

*contents of the slide borrowed from talks given by Aurojit Panda, NYU



Rise of middleboxes

Data delivery is not the only required functionalrty.

—}—Q } IDS
=2 WanOpt H Firewall

Performance: load content faster,

*contents of the slide borrowed from talks given by Aurojit Panda, NYU



Rise of middleboxes

Data delivery is not the only required functionalrty.

IDS

}— Cache H® @an@ét EP FireWalI

Performance: reduce bandwidth usage.

*contents of the slide borrowed from talks given by Aurojit Panda, NYU



Rise of middleboxes

Data delivery is not the only required functionalrty.

IDS

}— Cache H® WanOpt H FireWalI

|

Application support: protocol for legacy application.

*contents of the slide borrowed from talks given by Aurojit Panda, NYU



Rise of middleboxes

Data delivery is not the only required functionalrty.

IDS

}— Cache H@ WanOpt H Firewall

SSL

One-third of all network devices in

enterprises are middleboxes!
(source: Sherry et. al., SIGCOMM’ 2)

*contents of the slide borrowed from talks given by Aurojit Panda, NYU



Evolution of middleboxes

Dedicated hardware Software
Need for
Packets H flexibility s | Packets
ASIC CPU
Middleboxes Network functions

*contents of the slide borrowed from talks given by Aurojit Panda, NYU



From hardware middleboxes....

(||

IDS

}— Cache H@® WanOpt H Firewall
# [ESEE)

SSL [EE]
|

[

*contents of the slide borrowed from talks given by Aurojit Panda, NYU



...to software network functions (NFs)

Virtual Switch

1

} ._ | Cache ||WanOptl| 1DS |{Firewall]] SSL

*contents of the slide borrowed from talks given by Aurojit Panda, NYU



...to software network functions (NFs)

| Cache ||WanOptl| 1DS |{Firewall]] SSL

|l“|L

Virtual Switch

o
-

Primarily deployed in aVM
(Network Function Virtualization)

*contents of the slide borrowed from talks given by Aurojit Panda, NYU



Key benefits of software network functions

* Programmability
—ability to update and create new NFs.

* Fase of deployment, configuration, and management.

Firewall —{ Cache |—>

NF Service Chain




Key benefits of software network functions

* Programmability
—ability to update and create new NFs.

* Fase of deployment, configuration, and management.

-irewall
Firewall >

Firewall



Key benefits of software network functions

* Programmability
—ability to update and create new NFs.

* Fase of deployment, configuration, and management.

Being adopted by both carriers and cloud providers,



Benefits of software NF come at a cost

* Complex and costly state management.

* Unpredictable performance.

* Performance degradation.



State management during scaling or failover

Elastic Scaling of Stateful Network Functions

Shinae Woo™*, Justine Sherry*, Sangjin Han*, Sue Moon', Sylvia Ramasamy*, and Scott Shenker**

*University of California, Berkeley — YKAIST ~— *cMU — SICSI

Split/Merge: System Support for Elastic Execution in Virtual Middleboxes Abstract

Elastic scaling is a central pre

hard to realize in practice. T!
Shriram Rajagopalan’¥, Dan Williams®, Hani Jamjoom®, and Andrew Warfield* most Network Functions (NF
need to be shared across N|
state sharing while meeting
requirements placed on NFs
no solution exists that meet:
for the full spectrum of NFs.

S6 is a new framework
of NFs without compromis
builds on the insight that aj
straction is well-suited to t
as a distributed shary

TIBM T. J. Watson Research Center, Yorktown Heights, NY

iUniversity of British Columbia, Vancouver, Canada

Stateless Network Functions:

B . .
reaking the Tight Coupling of State and Processing

Rollback-Recovery for Middleboxes

i Basux  Aurojit Pan_da:
Pt X socac l\%glzjir:ry I?/Ianesht Joao Martins

Scott Shenkerosx

Murad Kablan, Azzam A
University

Isudais, Eric Keller
of Colorado, Boulder Franck Le
' IBM Research,
Justine Sharry® istian Macioccot
Anvind K“Shnasrg/?\:gyg{atr?egiamy* Luigi Rizzo}

« UC Berkeley o University of Washington i Intel Resear

ewalls, intrusion detection systen
Flalors, and load balancers no lon

ietary hardware, but can run in sog
ty servers, in a virtualized enviro‘
oughput [25]. This shift away fro

i b ]' S’:_Ou[}t]i bring several benefits inclug
an 4 astically scale th .
IB,IL\/I - Walso W’“ldmy Hanj Jami, ickly recover frumef:ie[:::srk functior
“Univergpy, o Resear amjoom -

ty of B N

N h Ce
ritish Copon o YOrktowp py;

hers have reported, ach;

. hat simple (44 45 2 gpe  ne hOS
ar . Abstrae
. p SOtV oying. 2 et
(o) Dep ddleboxe
n 1 g F n eny S are peip,
ope \oP\'D L york ot composgp "1 FChitc
Deve Ne“w a\l\d Ha\’ C \ u el Pport for p:- hxlmslble, and
D2 e nuh-2 Wmd”"‘e Significany p fa Vailabiljyy
e B . .
e \ gy e, 8 (el o oPOse Picy kep/fc;;z:f',’f,"' ove E2: A Framework for NFV Applications
ac HerZWY™ cale MiddJet, R), a
\otam cs.nul centet: ' Jerus Structyre 0Xes thyy
c@ . inaly wyersitys (0 achieye |, €Xploits
1 sciphiny univ! - Unlik, Y€ low oy, . B . .
_part Yo (S rew € gen ; Thead, Shoumik Palkar Chang Lan Sangjin Han
\B\'em\ ! ch\\ o e W e web oper® PR operate gy pe® (ViMtual g £ &l
AN \eY@‘dC i UC Berkeley UC Berkeley UC Berkeley
e o0 of ot sppalkar@berkeley.edu clan@eecs.berkeley.edu sangjin@eecs.berkeley.edu
« SC el
py
) of GO ; )
schol Keon Jang Aurojit Panda Sylvia Ratnasamy
- Intel Labs UC Berkeley UC Berkeley
SSTRACT o %“wgep Paving the Way for NFV: keon.jang@intel.com apanda@cs.berkeley.edu sylvia@eecs.berkeley.edu
Al enBO¥ | ments ol . e . . . .
We pres® (fﬁ\\e AP s OV Simplifying Middlebox Modifications using StateAlyzr .
sor net? etwor ‘”Ujo\ Jane Luigi Rizzo Scott Shenker
ot s
agem 7 Dles 0‘\ solution® Junaid Khalid, Aaron Gember-Jacobson, Roney Michael, Universita di Pisa UC Berkeley and ICSI
t‘we\)'e tarty ?:)'m‘é v\m\e-pe o Anubhavnidhi Abhashkumar, Aditya Akella rizzo@iet.unipi.it shenker@icsi.berkeley.edu
p\a:‘\;“»_\ﬁ §o;-w:“ et O kh;muu University of Wisconsin-Madison
D enBO ‘COD@nB 'T,\"‘E’p“gm& Abstract central contribution of this paper is a novel, framework-




Understanding NF Performance

Randy Smith  Cris
Coamnnter SCi

i inst
Backtracking Algorithmic Complexity Attacks Agal

a NIDS

tian Estan Somesh Jha
ences Department

| def-
relied
s us-
. . h
Automated Synthesis of Adversarial Workloads o
for Network Functions e
Luis Pedrosa Rishabh Iyer Arseniy Zaostrovnykh :“;h?tn
EPFL EPFL EPFL st-case
luis.pedrosa@epfl.ch rishabh.iyer@epfl.ch arseniy.zaostrovnykh@epfl.ch mpts in
the true
Jonas Fietz Katerina Argyraki ‘c:nd is
EPFL EPFL
jonas.fietz@epfl.ch katerina.ar i

ABSTRACT
Software netw
ment of networl
However, they
mance. Given tl
that during depl
formance of the
workloads. We ¢
lenge: it takes as ||
and outputs pacl
paths. Under the c
tion with a sophis|
paths that incur
memory-access pe
functions that imple
covered workloads
cut throughput by
KEYWORDS

Network Function P|

1 INTRODUC
This work is about s
of code, typically wril
processing functional
and network address
tionality has been rele;
middleboxes, often imy
ever, there has been a p
the potential to offer m
and reduced capital anq
This shift from hard|

Denial

Abstract

service atta

the worst €ase-

effectively comp

ACM acknowledges that this
by an employee, contractor or
the Government retains a noj

T

two versions O

a new cl

/e present a NE f
ot cks that exploit alg
in many common aJ
quently used data
expected running time

hash tables can dege

hosen input- .
fully ¢ ute such i

ainst the .
attacks ag £ Perl, the Squid

1 sin
 1atection system. U

of Service via Algorithmy

Scott A. Crosby

scrosb;

Departm

structures 0

ass of low-band
orithm!

SNG structus
pplications d:\:: Tfaverage»case”
fficient than
trees and
th care-

that’s far more €
both binary U
i ists Wi

e to linked lis N
nerat an attacker can

put and we Jdemonstrate

hash table '\mp\ememanons in
web proxy, and‘
g bandwidth

L tleino a

y@cs rice.edu

ent of Computer Science,

width denial of
ic deficiencies
res. Fre-

¢ Complexity Attacks

Dan S. Wallach
dwullafh@cx.rice edu

Rice University

i nts. H

i nsert n elemel N
S O(n) time 1O 1 A e
5“": e\e(m)em hashes to the sayf\e b:;st .
eatCJl will also degenerate 0 a \mkel N

: : i nts.

t&Zke 0(n?) time 10 insert n eleme

i S red-
ed tree algomhms, such as

While balanc 4 11, and treaps [17] cany

trees (111, AVL tree

B i t W
predictable FRE o functions 151 ¢z

ior, and unive v s
lor;xlake hash functions that are noﬁ Op“ o
o attacker, many common apphcamm‘ )
o y an CO!

i attacker C :
algorithms. If an e
‘:kllge inputs being used by‘these a:k%e o

ttacker may be able t0 induce o
. - nduce
auﬁon time effectively causing
Cl >

(DoS) attack.

owever,

ware pyp,

Pattern|
gines. A
veloped|
the wor:

Ab.
of Del
core
vice a
of entq
chitect

Ppresen|

system|

cussed||
bandw;

Yehuda Afek, Member, IEE,

IEEE/ACM TRANSACTIONS 0N NETW

Making DpJ Engines Resilient to A
Complexity Attacks

! > Anat Bremler-B,
David Hay, Member, 1557 any i

mber; IEEE,
Yaron Koral,

ORKING, VOL. 24, No_ 4, DECEMBER 2016

lgorithmic

> Yotam Harcho] .
Member, [EEE ol Member, IEEE,

affic i

2016 IEEE Conference on Network Function Virtualization and Software Defined Networks (NFV-SDN)

NFVPerf: Online Performance Monitoring and
Bottleneck Detection for NFV

Priyanka Naik, Dilip Kumar Shaw, Mythili Vutukuru

Department of Computer Science and Engineering, Indian Institute of Technology, Bombay
Email: {ppnaik, dilipl3, mythili} @cse.iitb.ac.in

s,

The recent interest in NFV has been spurred by the advent of
niques for efficient packet processing in
is expected to save costs

level of
operators
to make

are hogge,
Planeg» ;.
Problepg.
SValuate, pl
Omprepey
and 1/ per
Plane, peyrg

CCa tegories |
-2 COMpyy

TER

ork Operagioy,

Ke}’WordS

data e,
aa cengey Networg]

Enforcing Network-Wide Policies in the Presence
of Dynamic Middlebox Actions using FlowTags

Seyed Kaveh Fayazbakhsh*  Luis Chiang®
*Carnegie Mellon University

Abstract
Middleboxes provide key security and performance

guarantees in networks. Unfortunately, the dynamic traf-

e thay sndies malbe it AiFG el fe reocmn

Vyas Sekar*
"Deutsche Telekom Labs

Minlan Yu*

Jeffrey C. Mogul*
tusc

*Google

ing (SDN) to enforce and verify network-wide policies
(e.g., [39, 40, 44]) does not extend to networks with mid-

dleboxes. Specifically, middlebox actions violate two
key SDN tenets [24, 32]:



roviding guarantees about NF behavior

A Formally Verified NAT

Luis Pedrosa

el
Arseniy Zaostrovnykh E;“’}aslig:‘::nd EPEL, qwitzerland
EPFL, Switzerland 2T \uis.pedrosa@epﬂ-Ch
arseniy.zaostrovnykh@epﬁch SOlal'p"en‘@ePﬂ'Ch
. Candea
< o Argyraki George ¢ Ab,
K;;?Cn:witze%\{and EPFL, Switzerland h R Stract L-Sws ‘Ep, ly Sagjy ¢
» 2 fl.
katerina.argyraki@epﬂ.ch george.candea@ep C! ecent Wwork OTAU . ott Sp
- ork on network verification but, Warding has maq ICs enkep
‘There exists © lot of pro” o ntereasons about both the these apy corr CCtnegg eIgrea‘l’rogr
__.uledge none {03 .- 4Pproac, S of €SS jj . b
tinipg -+ 2ches ¢, etwor; n verify; 0Xes wj
forwan] middie Oxe:":"' be useq ({2&2& 35]ymg thefo.  Given zhg,.h""t Changeg
beha: > SUchag veri - How, the ¢, T cor 1n th
. ior as cache, 11y nety, eve, € Cauge Mplexit. € physic.
an, Orks et of’ Y and Sical infy,
W : » n Work Prevyg, stry
! a d be WOrk ffy S i e 131
i Staj ar

Software Dataplane Verification

Mihai Dobrescu and Katerina Argyraki

EPFL, Switzerland
Abstract The subject of this work is a verification tool that
takes as input the executable binary of a software data-

Software dataplanes are emerging as an alternative to tra-
ditional hardware switches and routers, promising pro-
grammability and short time to market. These advan-
tages are set against the risk of disrupting the network
with bugs. unpredictable performance, Of security vul-
nerabilities. We explore the feasibility of verifying soft-
ware dataplanes 0 ensure smooth network operation.
For general programs, verifiability and performance are
competing goals; we argue that software dataplanes are
different—we can write them in a way that enables veri-
fication and preserves performance. We present @ verifi-
cation tool that takes as input a software dataplane, writ-
ten in a way that meets a given set of conditions, and
(dis)proves that the dataplane satisfies crash-freedom,
bounded-execution, and filtering properties. We evaluate
our tool on stateless and simple stateful Click pipelines;
we perform complete and sound verification of these
pipelines within tens of minutes. whereas a state-of-the-
art general-purpose tool fails to complete the same task

within several hours.

1 Introduction

Software dataplanes  are emerging from both re-
search [17,26.2737] and industry 12,31 buckgmunds asa
more flexible alternative to (raditional hardware switches
and routers. They promise to cut network provisioning
costs by half, by enabling dynamic allocation of packet-
processing tasks to network devices [42]; or to turn the
Internet into an evolvable architecture, by enabling con-
tinuous functionality update of devices located at strate-

plane and proves that it does (or does not) satisfy a target
property; if the target property is not satisfied, the ool
should provide counter-examples, i.e., packet sequences
that cause the property to be violated. Developers of
packet»prnce<sing apps could use such a tool to produce
software with guarantees, e.g., that never seg-faults or
Kkernel-panics, no matter what traffic it receives. Network
operators could use the tool 0 verify that a new packet-
processing app they are considering for deployment will
not destabilize their network, €., it will not introduce
more than some known fixed amount of per-packet la-
tency. One might even envision markets for packet-
processing apps—similar to today’s smartphone/tablet
app markets—where network operators would shop for
new code to “drop” into their network devices. The op-
erators of such markets would need & verification tool to
certify that their apps will not disrupt their customers’
networks.

For general programs, verifiability and performance
are competing goals. Proving properties of real programs
(unlike searching for bugs) remains an elusive goal for
the systems community, at least for programs that consist
of more than a few hundred lines of code and are writ-
ten in a low-level language like C++. A high-level lan-
guage like Haskell can guarantee certain properties (like
the impossibility of buffer overflow) by construction, but
typically at the cost of performance.

For software dataplanes, it does not have to be this
way: we will argue that we can write them in a way that
enables verification and preserves performance. The key
question then is: what defines a “software dataplane” and
how much more restricted is it thana “general program”?

oA to restrict our dataplane program-




High performance NF implementations

Microboxes: High Performance NFV with Customizable,
Asynchronous TCP Stacks and Dynamic Subscriptions
Guyue Liu*, Yuxin Ren*, Mykola Yurchenko®,

K K. Ramakrishnan’, Timothy Wood*
*George Washington University, TUniversity of California, Riverside

Abstract

‘While programmalf
handle growing net|
yet simple abstractil
in hardware remair|
problem with Flo

stateful packet pros
straction is based o
troduces the explic
Blaze to leverage f|
pressive, supportin,
tions, and easy to u|
tation issues from

FlowBlaze on a N¢g
tency (in the order
tively little power,
thousands of flows,
for even higher spe
ware and software

licly available.

1 Introductio]

Network infrastrucq
network functions t{
and server load bal.
such as access con
Given
the need to contini
tors have turned to

examples.

FlowBlaze: Stateful Packet Processing in Hardware

Salvatore Pontarelli'-2, Roberto Bifulco®, Marco Bonola!2, Carmelo Cascone?,
Marco Spazianiz's, Valerio Bruschi?”, Davide Sanvito®, Giuseppe Siracusano,
Antonio Capone6, Michio Honda?, Felipe Huici® and Giuseppe Bianchi>>

lebryd, 2CNIT, 3NEC Laboratories Europe, 4Open Networking Foundation,
SUniversity of Rome Tor Vergata, °Politecnico di Milano

et WOrkln

8 Sta,
uhap, ck for
ad Jamshed» Young, Flow Onitoring M;
Youn My, iddleb
Oxeg

01, Dogygp .
gh .
Sehoor % Elecy,, "1 Kim, DOngsu Hy
an,

Ahes.

LT
Sineeyyy,
'8 K4 VAV

YOungSOO Park

ClickNP: Highly Flexible and High Performance
Network Processing with Reconfigurable Hardware

Abstract

The move from hardware middleboxes to software network
functions, as advocated by NFV, has proven more challeng-
ing than expected. Developing new NFs remains a tedious
process, requiring that developers repeatedly rediscover
and reapply the same set of optimizations, while current
techniques for providing isolation between NFs (using
'VMs or containers) incur high performance overheads. In
this paper we describe NetBricks, a new NFV framework
that tackles both these problems. For building NFs we take
inspiration from modern data analytics frameworks (e.g.,
Spark and Dryad) and build a small set of customizable net-
work processing elements. We also embrace type checking
and safe runtimes to provide isolation in software, rather
than rely on hardware isolation. NetBricks provides the
same memory isolation as containers and VMs, without
incurring the same performance penalties. To improve /O

NetBricks: Taking the V out of NFV

Aurojit Panda’ Sangjin Han Keon Jang* Melvin Walls" Sylvia Ratnasamy® Scott Shenker™*
UC Berkeley ¥ Google * ICSI

standard tools for managing VMs; (c) faster development,
which now requires writing software that runs on com-
modity hardware; and (d) reduced costs by consolidating
several NFs on a single machine. However, despite these
promised advances, there has been little progress towards
large-scale NF deployments. Our discussions with three
major carriers revealed that they are only just beginning
small scale test deployments (with 10-100s of customers)
using simple NFs e.g., firewalls and NATs.

The move from hardware middleboxes to software NFs
was supposed to speed innovation, so why has progress
been so slow? We believe this delay is because traditional
approaches for both building and running NFs are a poor
match for carrier networks, which have the following re-
qui performance, NF depl s should be able
to provide per-packet latencies on the order of 10s of s,
and throughput on the order of 10s of Gbps; efficiency,

2 ohmuild e mmecihla fe romenlidate cavaral NEe mm o cin

Bojie List Kun Tan' Layong (Larry) Luof Yanging Peng*t Rengian Luo$t
Ningyi Xut Yonggiang Xiong’f Peng ChengJf Enhong Chen$
Microsoft Research  SUSTC  Microsoft  *SJTU

RACT 1. INTRODUCTION

fexible software network functions (NFs) are cru-
ponents to enable multi-tenancy in the clouds. How-
tware packet processing on a commodity server has
capacity and induces high latency. While software
1d scale out using more servers, doing so adds sig-
Icost. This paper focuses on accelerating NFs with
Imable hardware, i.e., FPGA, which is now a ma-
nology and inexpensive for datacenters. However,
predominately programmed using low-level hard-
beription languages (HDLs), which are hard to code
cult to debug. More importantly, HDLs are almost
ible for most software This paper

a FPGA-accelerated platform for highly flexible
-performance NFs with commodity servers. ClickNP

flexible as it is completely programmable using
el C-like languages, and exposes a modular program-
Straction that resembles Click Modular Router. ClickNP
gh performance. Our prototype NFs show that they
ess traffic at up to 200 million packets per second
a-low latency (< 2us). Compared to existing soft-
hnterparts, with FPGA, ClickNP improves through-
0Ox, while reducing latency by 10x. To the best of

ledge, ClickNP is the first FPGA-accelerated plat-

Modern multi-tenant datacenters provide shared infrastruc-
ture for hosting many different types of services from differ-
ent customers (i.e., tenants) at a low cost. To ensure secu-
rity and performance isolation, each tenant is deployed in
a virtualized network environment. Flexible network func-
tions (NFs) are required for datacenter operators to enforce
isolation while si usly ing Service Level
Agreements (SLAs).

Conventional hardware-based network appliances are not
flexible, and almost all existing cloud providers, e.g., Mi-
crosoft, Amazon and VMWare, have been deploying software-
based NFs on servers to maximize the flexibility [23, 30].
However, software NFs have two fundamental limitations —
both stem from the nature of software packet processing.
First, processing packets in software has limited capacity.
Existing software NFs usually require multiple cores to achieve
10 Gbps rate [33,43]. But the latest network links have
scaled up to 40~100 Gbps [11]. Although one could add
more cores in a server, doing so adds significant cost, not
only in terms of capital expense, but also more operational
expense as they are burning significantly more energy. Sec-
ond, processing packets in software incurs large, and highly
variable latency. This latency may range from tens of mi-

NFs, written completely in high-level I and
|2 40 Gbps line rate at any packet size.

Manconfc

cr d to milli ds [22,33,39]. For many low latency
applications (e.g., stock trading), this inflated latency is un-
acceptable.




High performance NF impl

Microboxes: High Performance NFV with Customizable,
Asynchronous TCP Stacks and Dynamic Subscriptions

ementations

Guyue Liu*, Yuxin Ren*, Mykola Yurchenko®,
K K. Ramakrishnan’, Timothy Wood*
*George Washington University, TUniversity of California, Riverside

et WOrkln

8 Sta,
Uhampm,q <k for
I lo .
MG, Youngcs, " Monitorip . d
n Mo, dd]ep,,
Xes

01, Dogygp .
gh .
Sehoor % Elecy,, "1 Kim, DOngsu Hy
an,

ical gy,
Sinee,y,
Izeermg’ Kazsy YOungSOO Park

Ahes.

FlowBlaze: Stateful Packet Processing in Hardware

Salvatore Pontarelli'-2, Roberto Bifulco®, Marco Bonola!2, Carmelo Cascone?,
Marco Spazianiz's, Valerio Bruschi?”, Davide Sanvito®, Giuseppe Siracusano,
Antonio Capone6, Michio Honda?, Felipe Huici® and Giuseppe Bianchi>>

lebryd, 2CNIT, 3NEC Laboratories Europe, 4Open Networking Foundation,
SUniversity of Rome Tor Vergata, °Politecnico di Milano

ClickNP: Highly Flexible and High Performance
Network Processing with Reconfigurable Hardware

ijo LiST Kun Tant

Abstract

‘While programm:
handle growing n«
yet simple abstrac
in hardware rem:
problem with Flo
stateful packet pr
straction is based
troduces the expli
Blaze to leverage
pressive, supportir}
tions, and easy to
tation issues from|
FlowBlaze on a N§j
tency (in the orde:
tively little power]
thousands of flow:
for even higher sp
ware and softwarg
licly available.

1 Introductid

Network infrastrug
network functions
and server load ba|
such as access co
examples. Given|
the need to contir]
tors have turned t

NetBricks: Taking the V out of NFV

Aurojit Panda’ Sangjin Han Keon Jang* Melvin Walls" Sylvia Ratnasamy® Scott Shenker™*
UC Berkeley ¥ Google * ICSI

Abstract

The move from hardware middleboxes to software network
functions, as advocated by NFV, has proven more challeng-
ing than expected. Developing new NFs remains a tedious
process, requiring that developers repeatedly rediscover
and reapply the same set of optimizations, while current
techniques for providing isolation between NFs (using
'VMs or containers) incur high performance overheads. In
this paper we describe NetBricks, a new NFV framework
that tackles both these problems. For building NFs we take
inspiration from modern data analytics frameworks (e.g.,
Spark and Dryad) and build a small set of customizable net-
work processing elements. We also embrace type checking
and safe runtimes to provide isolation in software, rather
than rely on hardware isolation. NetBricks provides the
same memory isolation as containers and VMs, without
incurring the same performance penalties. To improve /O

standard tools for managing VMs; (c) faster development,
which now requires writing software that runs on com-
modity hardware; and (d) reduced costs by consolidating
several NFs on a single machine. However, despite these
promised advances, there has been little progress towards
large-scale NF deployments. Our discussions with three
major carriers revealed that they are only just beginning
small scale test deployments (with 10-100s of customers)
using simple NFs e.g., firewalls and NATs.

The move from hardware middleboxes to software NFs
was supposed to speed innovation, so why has progress
been so slow? We believe this delay is because traditional
approaches for both building and running NFs are a poor
match for carrier networks, which have the following re-
qui performance, NF depl should be able
to provide per-packet latencies on the order of 10s of s,
and throughput on the order of 10s of Gbps; efficiency,

2 ohmuild e mmecihla fe romenlidate cavaral NEe mm o cin

Yonggiang Xiong’(
Microsoft Research

Ningyi Xu'

CT

exible software network functions (NFs) are cru-
jonents to enable multi-tenancy in the clouds. How-

are packet processing on a commodity server has
hpacity and induces high latency. While software
d scale out using more servers, doing so adds sig-
ost. This paper focuses on accelerating NFs with
hable hardware, i.e., FPGA, which is now a ma-
ology and inexpensive for datacenters. However,
predominately programmed using low-level hard-
ription languages (HDLs), which are hard to code
ult to debug. More importantly, HDLs are almost
le for most software This paper

Layong (Larry) Luot

a FPGA-accelerated platform for highly flexible
erformance NFs with commodity servers. ClickNP
flexible as it is completely programmable using
C-like languages, and exposes a modular program-
-action that resembles Click Modular Router. ClickNP
h performance. Our prototype NFs show that they
ss traffic at up to 200 million packets per second
-low latency (< 2us). Compared to existing soft-
terparts, with FPGA, ClickNP improves through-
x, while reducing latency by 10x. To the best of
ledge, ClickNP is the first FPGA-accelerated plat-

Yanging Peng®? Rengian Luo$t

Peng Cheng’f Enhong Chen®

SusTC  iMicrosoft *SJTU

1. INTRODUCTION

Modern multi-tenant datacenters provide shared infrastruc-
ture for hosting many different types of services from differ-
ent customers (i.e., tenants) at a low cost. To ensure secu-
rity and performance isolation, each tenant is deployed in
a virtualized network environment. Flexible network func-
tions (NFs) are required for datacenter operators to enforce
isolation while si usly ing Service Level
Agreements (SLAs).

Conventional hardware-based network appliances are not
flexible, and almost all existing cloud providers, e.g., Mi-
crosoft, Amazon and VMWare, have been deploying software-
based NFs on servers to maximize the flexibility [23, 30].
However, software NFs have two fundamental limitations —
both stem from the nature of software packet processing.
First, processing packets in software has limited capacity.
Existing software NFs usually require multiple cores to achieve
10 Gbps rate [33,43]. But the latest network links have
scaled up to 40~100 Gbps [11]. Although one could add
more cores in a server, doing so adds significant cost, not
only in terms of capital expense, but also more operational
expense as they are burning significantly more energy. Sec-
ond, processing packets in software incurs large, and highly
variable latency. This latency may range from tens of mi-

s, written completely in high-level 1 and
40 Gbps line rate at any packet size.

l annnoanto

cr d to milli ds [22,33,39]. For many low latency
applications (e.g., stock trading), this inflated latency is un-
acceptable.




NetBricks: Taking the V out of NFV

OSDI'l 6

Slides borrowed from the OSDI talk



NFV Requirements

High Packet Rates: Must keep up with line rate which is
> | OMPPS

Low Latency: Used for applications like VolP and video
conferencing

Support NF Chaining: Packets go through sequence of NFs

|




NFV Requirements

High Packet Rates: Must keep up with line rate which is
> | OMPPS

Low Latency: Used for applications like VolP and video
conferencing

Support NF Chaining: Packets go through sequence of NFs

|




Challenges for NFV

* Running NFs:

— |solation and Performance

* Building NFs:

— High-level Programming and Performance



Challenges for NFV

* Running NFs:

— |solation and Performance



Isolation

* Memory Isolation: Fach NF's memory cannot be
accessed by other NFs.

* Packet Isolation: When chained, each NF processes
packets in isolation.

 Performance Isolation: One NF does not affect
another’s performance.



Isolation

* Memory Isolation: Fach NF's memory cannot be
accessed by other NFs.

* Packet Isolation: When chained, each NF processes
packets in isolation.

ancthers-performance:




Current Solution

vSwitch

VM/Container

VM/Container

VM/Container

5

NIC

5

NIC

Memory |solation

Packet Isolation

Performance



Current Solution

VM/Container

VM/Container

VM/Container

Memory Isolation

Packet Isolation

Performance



Current Solution

VM/Container

VM/Container

VM/Container

v Memory Isolation

Packet Isolation

Performance



Current Solution

vSwitch

VM/Container

VM/Container

VM/Container

e =

NIC

e =

NIC

v'"Memory Isolation

Packet Isolation

Performance



Current Solution

vSwitch

VM/Container

VM/Container

VM/Container

5

NIC

5

NIC

v’ Memory Isolation

Packet Isolation

Performance



Current Solution

vSwitch

VM/Coantainer

VM/Container

VM/Container

5

NIC

v Memory Isolation

Packet Isolation

Performance



Current Solution

/ ™\

vSwitch

C

- Op}//I\/I/C tainer
a ||

VM/Container

VM/Container

5

5

NIC

NIC

v Memory Isolation

Packet Isolation

Performance



Current Solution

vSwitch

g

.| Copy

vM/Cantainer

VM/Container

VM/Container

e =

NIC

3

NIC

v Memory Isolation

Packet Isolation

Performance



Current Solution

vSwitch

.| Copy
e

vM/Container || VM/Container

VM/Container

e =

NIC

e =

NIC

—~—

v Memory Isolation

Packet Isolation

Performance



Current Solution

vSwitch

/ "\

C
- .‘Op}//M/Cbmtainer

VM/Container

VM/Container

5

5

NIC

NIC

—~—_

v’"Memory |solation

v’ Packet Isolation

Performance



Current Solution

vSwitch

.| Copy
e

viM/Container

VM/Container

VM/Container

e =

NIC

NIC

e =

~__"

v’ Memory Isolation

v’ Packet Isolation

X Performance



|Isolation costs Performance

30
25
20
15

10

Processing Rate (Mpps)




|Isolation costs Performance

S0 @ttt
OVS VM
2D oo . ..t e et ettt et e e et e e eteeeeeanaee s
o0 b I e

LS O TR

10 I e

Processing Rate (Mpps)




Processing Rate (Mpps)

|Isolation costs Performance

10 NP
No Isolation s
OVS VM
25 BESS VM o .
O N
15 L I
1O L I
5




|Isolation costs Performance

Processing Rate (Mpps)

S0 @ ee oo
No Isolation s
OVS VM
BESS VM o ..
BESS Container mms

25

O L N

15 0 D

10




NetBricks Runtime Architecture

Single Process Space

NF Z NF Z
NgY NF Y
3 5
NF X NF X

/CS| Sfcheduler

DPDK Poll for 1/O DPDK Poll for 1/O

NICs




NetBricks Runtime Architecture

Single Process Space

\4

NF Z

4 Function
NE Yical

[ v 1

NF Z

NFY

NF X

ZCS| Scheduler
DPDK Poll for 1/O é

DPDK Poll for 1/O

NICs




LCS|: Zero Copy Soft Isolation

* VMs and containers impose cost on packets crossing
isolation boundaries.

* Insight: Use type checking (compile time) and
runtime checks for isolation.

* |solation costs largely paid at compile time (small
runtime costs).



NetBricks Approach

Disallow pointer arithmetic in NF code: use safe subset of
languages.

Type checks + array bounds checking provide memory
isolation.

Build on unigue types for packet isolation.

— Unique types ensure references destroyed after certain calls.

— Ensure only one NF has a reference to a packet.
— Enables zero copy packet I/O.

All of these features implemented on top of Rust.



Software Isolation

* Provides memory and packet isolation.

* Improved consolidation: multiple NFs can share a core.

— Function call to NF (~ few cycles) vs context switch (~ | us).

* Reduce memory and cache pressure.

— Zero copy I/O => do not need to copy packets around.



Challenges for NFV

* Building NFs:

— High-level Programming and Performance



How to write NFs?

* Current: NF writers concerned about meeting performance
targets

— Low level abstractions (I/O, cache aware data structures) and low
level code.

* Spend lots of time optimizing how abstractions are used to
get performance.,

* Observation: NFs exhibit common patterns: abstract and
optimize these.

* Analogous to what happened in other areas.
— MPI to Map Reduce, etc.



Abstractions

~
Packet Processing
Parse/Deparse
Transform
_Filter )
i Byte Stream A
Window
Packetize
\_ _J

Behavior of these abstractions

Control Flow

Group By
Shuffle

_Merge

State

Bounded
#- Consistency




Example NF

* Maglev: Load balancer from Google (NSDI'|6).
* NetBricks implementation: 105 lines, 2 hours of time.

* Comparable performance to optimized code



Conclusion

* Software isolation Is necessary for high performance NFV.
— Type checking + bound checking + unique types.

* Performance is not anathema to high-level programming
— Abstract operators + UDF simplify development.



Your Opinions

e Pros

— UDFs provide developers with flexibility and operators with high
performance.

— Reduce overhead for memory/packet isolation
* Moves away from using container and VMs

* Software memory isolation with compile-time and runtime
checks.

* Found value for Rust's memory-safe programming for
networking.

— Thorough evaluation, high performance.

— Provides clean, easy-to-use primitives.



Your Opinions

* Cons
— Clean-slate: requires rewriting NFs
— Potentially high CPU utilization.

— Can VMs and containers provide stronger isolation guarantees (e.g.
performance isolation)?! What if there are bugs in NF
implementation?

— How to achieve line-rate performance for very complex NFs?



Your Opinions

* |deas
— Intel SGX to provide greater security and isolation?
— In-depth evaluation of security of NetBricks.
— Improving the programming interfaces.
— Using programmable hardware for NFs



Evolution of middleboxes

Dedicated hardware Software
Need for
Packets H flexibility s | Packets
ASIC CPU
Middleboxes Network functions

*contents of the slide borrowed from talks given by Aurojit Panda, NYU



Evolution of middleboxes

Dedicated hardware

Packets

ASIC

Middleboxes

Need for
flexibility

Software

Packets

CPU

Network functions

Need for

performance
|

Programmable HW

Packets E

e.g. FPGA

ClickNP,. SIGCOMM’| 6
FlowBlaze, NSD/I’ 19
TEA, SIGCOMM’20



Evolution of middleboxes

Dedicated hardware

Packets

ASIC

Middleboxes

Need for
flexibility

Software

Packets

CPU

Network functions

Need for

performance
|

Programmable HW

Packets E

e.g. FPGA

ClickNP,. SIGCOMM’| 6
FlowBlaze, NSD/I’ 19
TEA, SIGCOMM’20



Logistics

Tuesday, Dec |t Students’ presentation (and choice)

— Sign up for a paper by the end of this week.

Thursday, Dec 3™ No reading assignment, only wrap-up lecture.

Friday, Dec 4™ Final project report due.

Tuesday, Dec 8™: Project presentation. Details TBA.



