Smart (Programmable) NICs

ECE/CS598HPN

Radhika Mittal

Microsoft Case Study

Azure Accelerated Networking: SmartNICs in the Public Cloud

NSDI'I8

Slides borrowed from the NSDI talk

Overview

- Azure and Scale
- Recap: Virtual Filtering Platform and Host SDN
- Why Accelerated Networking? Scaling up SDN
- Hardware Choices
- Azure SmartNIC
- Accelerated Networking in Azure: Results
- Experiences and Lessons Learned
- Conclusion and Future

Microsoft Azure

>85%

Fortune 500 using Microsoft Cloud

>120,000

New Azure customers a month

- > 9 MILLION
 Azure Active
 Directory Orgs
- >18 BILLION
 Azure Active Directory authentications/week
- > 3 TRILLION

Azure Event Hubs events/week

Azure Scale & Momentum

>60

TRILLION

Azure storage objects

>900 TRILLION requests/day

>50% of Azure VMs are Linux VMs

>110 billion

Azure DB requests/day

50 Global Regions, Hundreds of DCs, Millions of Servers

Overview

- Azure and Scale
- Recap: Virtual Filtering Platform and Host SDN
- Why Accelerated Networking? Scaling up SDN
- Hardware Choices
- Azure SmartNIC
- Accelerated Networking in Azure: Results
- Experiences and Lessons Learned
- Conclusion and Future

Virtual Filtering Platform (VFP) Azure's SDN Dataplane

Virtual switch for Hyper-V / Azure

Key Primitive: Match Action Tables

Unified Flow Tables – A Fastpath Through VFP

Overview

- Azure and Scale
- Recap: Virtual Filtering Platform and Host SDN
- Why Accelerated Networking? Scaling up SDN
- Hardware Choices
- Azure SmartNIC
- Accelerated Networking in Azure: Results
- Experiences and Lessons Learned
- Conclusion and Future

Scaling Up SDN: NIC Speeds in Azure

• 2009: 1Gbps

• 2012: 10Gbps

• 2015: 40Gbps

• 2017: 50Gbps

Soon: 100Gbps?

We got a 50x improvement in network throughput, but not a 50x improvement in CPU power!

Host SDN worked well at 1GbE, ok at 10GbE... what about 40GbE+?

Traditional Approach to Scale: ASICs

Example ASIC Solution: Single Root IO Virtualization (SR-IOV) gives native performance for virtualized workloads

Hardware or Bust

- SR-IOV is a classic example of an "all or nothing" offload its latency, jitter, CPU, performance benefits come from skipping the host entirely
- If even one widely-used action isn't supported in hardware, have to fall back to software path and most of the benefit is lost even if hardware can do 99% of the work
- Other examples: RDMA, DPDK, ... a common pattern
- This means we need to consider carefully how we will add new functionality to our hardware as needed over time

Overview

- Azure and Scale
- Recap: Virtual Filtering Platform and Host SDN
- Why Accelerated Networking? Scaling up SDN
- Hardware Choices
- Azure SmartNIC
- Accelerated Networking in Azure: Results
- Experiences and Lessons Learned
- Conclusion and Future

Silicon alternatives

FLEXIBILITY

EFFICIENCY

Option 5: Don't offload at all, instead make SDN more efficient with e.g. poll-mode DPDK

CPU vs. FPGA

What is an FPGA, Really?

- Field Programmable Gate Array
- Chip has large quantities of programmable gates – highly parallel
- Program specialized circuits that communicate directly
- Two kinds of parallelism:
 - Thread-level parallelism (stamp out multiple pipelines)
 - Pipeline parallelism (create one long pipeline storing many packets at different stages)

Our Solution: Azure SmartNIC (FPGA)

- HW is needed for scale, perf, and COGS at 40G+
- 12-18 month ASIC cycle + time to roll new HW is too slow
- To compete and react to new needs, we need agility – SDN
- Programmed using Generic Flow Tables
 - Language for programming SDN to hardware
 - Uses connections and structured actions as primitives

FPGAs: Internal Q&A

- 1. Aren't FPGAs much bigger than ASICs?
- 2. Aren't FPGAs very expensive?
- 3. Aren't FPGAs hard to program?
- 4. Isn't my code locked in to a single FPGA vendor?
- 5. Can FPGAs be deployed at hyperscale? Are they DC-ready?

Overview

- Azure and Scale
- Recap: Virtual Filtering Platform and Host SDN
- Why Accelerated Networking? Scaling up SDN
- Hardware Choices
- Azure SmartNIC
- Accelerated Networking in Azure: Results
- Experiences and Lessons Learned
- Conclusion and Future

Azure Accelerated Networking

- Highest bandwidth VMs of any cloud so far...
 - Standard compute VMs get up to 32Gbps
 - Stock Linux VM with CUBIC gets 30+Gbps on a single connection

- Provides SR-IOV to the VM
- 5x+ latency improvement sub 15us within tenants
- Increased packets per second Up to 25M PPS (12M forwarding) for DPDK VMs
- Reduced jitter means more consistency in workloads
- Enables workloads requiring native performance to run in cloud VMs
 - >2x improvement for many DB and OLTP applications

AccelNet Comparative Results

AccelNet Comparative Results

Overview

- Azure and Scale
- Recap: Virtual Filtering Platform and Host SDN
- Why Accelerated Networking? Scaling up SDN
- Hardware Choices
- Azure SmartNIC
- Accelerated Networking in Azure: Results
- Experiences and Lessons Learned
- Conclusion and Future

Serviceability is Key

- All parts of this system can be updated, any of which require us to take out the hardware path – or VM can be live migrated
 - FPGA image, driver, GFT layer, Vswitch/VFP, NIC PF driver

Changes, Changes, Changes

A few examples of many...

- TCP and protocol state machines
- Complex packet forwarding and duplication actions
- New SDN actions
- Accelerating the offload path
- Line rate diagnostics and monitoring

Changes, Changes, Changes

A few examples of many...

- TCP and protocol state machines
- Complex packet forwarding and duplication actions
- New SDN actions
- Accelerating the offload path
- Line rate diagnostics and monitoring

Lessons Learned

- Design for serviceability upfront
- Use a unified development team
- Use software development techniques for FPGAs
- Better perf means better reliability
- HW/SW co-design is best when iterative
- Failure rates remained low FPGAs in the DC were reasonably reliable
- Upper layers should be agnostic of offloads
- Mitigating Spectre performance impact

Pros:

- Discusses pros and cons of different offload mechanisms.
- Achieve flexibility with hardware speed.
- Focus on maintainance and upgradability.
- Reduced CPU utilization.
- Exception packets handled in software FPGA need not remember all policies.
- Mature well-tested solution.

Cons:

Cons:

- No performance comparison (shown) with other smartNIC solutions.
- FPGA-equipped smartNIC vs programmable switches?
- Area and cost of FPGA over ASIC (compared to other alternatives).
- FPGA development is harder than software.
- Recompiling an FPGA is more "expensive" than recompiling software.
- No evidence that the design can scale to 100Gbps.
- Security vulnerabilities?
- Viable only at Azure scale.

Ideas:

- How to divide functionality between software, programmable NICs, and programmable switches?
- Use FPGAs for offloading more features.
- More evaluation under high workload.
- Can one design ''custom'' FPGAs with smaller area and cost?
- Compare FPGA-based approach with other alternatives (e.g. SoftNIC) in terms of both performance and flexibility.
- A compiler that translates code written in higher-level language to FPGA.

Software or Hardware?