High Performance Network Stack

ECE/CS598HPN

Radhika Mittal

Rx Processing in the kernel

Tx Processing in the kernel

Various sources of performance overheads

MegaPipe: A New Programming Interface for Scalable Network I/O

Sangjin Han, Scott Marshal, Byung-Gon Chun, Sylvia Ratnasamy

OSDI'12

Content borrowed from Sangjin's OSDI talk

Two Types of Network Workloads

Bulk Transfer

Large files (HDFS)

Message-oriented

 Short connections or small messages (HTTP, RPCs, DB, key-value stores, etc)

Two Types of Network Workloads

Bulk Transfer

- Large files (HDFS)
- A half CPU core can saturate 10Gbps link

Message-oriented

- Short connections or small messages (HTTP, RPCs, DB, key-value stores, etc)
- CPU-intensive

BSD Socket API Performance Issues

```
n_events = epoll_wait(...); // wait for I/O readiness
for (...) {
    new_fd = accept(listen_fd); // new connection
    bytes = recv fd2, buf, 4096); // new data for fd2
```

- Issues with message-oriented workloads
 - System call overhead

BSD Socket API Performance Issues

```
n_events = epoll_wait(...); // wait for I/O readiness
for (...) {
    new_fd = accept(listen_fd); // new connection
    bytes = recv(fd2, buf, 4096); // new data for fd2
```

- Issues with message-oriented workloads
 - System call overhead
 - Shared listening socket

BSD Socket API Performance Issues

```
n_events = epoll_wait(...); // wait for I/O readiness
for (...) {
    new_fd = accept(listen_fd); // new connection
    ...
    bytes = recv(fd2, buf, 4096); // new data for fd2
```

- Issues with message-oriented workloads
 - System call overhead
 - Shared listening socket
 - File abstraction overhead

RPC-like test on an 8-core Linux server (with epoll)

1. Small Messages Are Bad

2. Short Connections Are Bad

Number of Transactions per Connection

3. Multi-Core Will Not Help (Much)

MegaPipe Design

Focus: low-overhead and multi-core scalability.

MegaPipe: Overview

Problem

Cause

Solution

Low per-core performance

Poor multi-core scalability

Key Primitives

- Handle
 - Similar to file descriptor
 - But only valid within a channel
 - TCP connection, pipe, disk file, ...
- Channel
 - Per-core, bidirectional pipe between user and kernel
 - Multiplexes I/O operations of its handles

How channels help?

User

Kernel

I. I/O Batching

- Transparent batching
 - Exploits parallelism of independent handles

)SDI 2012

How channels help?

How channels help?

2. Listening Socket Partitioning

- Per-core accept queue for each channel
 - Instead of the globally shared accept queue

2. Listening Socket Partitioning

- Per-core accept queue for each channel
 - Instead of the globally shared accept queue

2. Listening Socket Partitioning

- Per-core accept queue for each channel
 - Instead of the globally shared accept queue

Listening socket mp_accept() User Accept Accept Accept queue queue queue Kernel New connections

How channels help?

How channels help?

3. Light-weight Sockets

- Common-case optimization for sockets
 - Sockets are ephemeral and rarely shared
 - Bypass the VFS layer
 - Convert into a regular file descriptor only when necessary

Evaluation: Microbenchmarks

Throughput improvement with various message sizes

Evaluation: Microbenchmarks

- Multi-core scalability
 - with various connection lengths (# of transactions)

Evaluation: Macrobenchmarks

- memcached
 - In-memory key-value store
 - Limited scalability
 - Object store is shared by all cores with a global lock
- nginx
 - Web server
 - Highly scalable
 - Nothing is shared by cores, except for the listening socket

Evaluation: Macrobenchmarks

- memcached
 - In-memory key-value store
 - Limited scalability
 - Object store is shared by all cores with a global lock
- nginx
 - Web server
 - Highly scalable
 - Nothing is shared by cores, except for the listening socket

Evaluation: memcached

Evaluation: memcached

Evaluation: nginx

Conclusion

- Short connections or small messages:
 - High CPU overhead
 - Poorly scaling with multi-core CPUs
- MegaPipe
 - Key abstraction: per-core channel
 - Enabling three optimization opportunities:
 - Batching, partitioning, lwsocket
 - 15+% improvement for memcached, 75% for nginx

Your Opinions

Pros:

- Light-weight socket, batching, listening socket partitioning.
- Thorough evaluation of performance bottlenecks.
- Significant performance improvement (for nginx).

Your Opinions

Cons:

- Lack of backwards-compatibility.
- How much effort is required to port an application to use MegaPipe?
- Batching may impact latency.
- What do we lose out on by using lwsockets?
- Does not support (dynamic) load-balancing for partitioned sockets.
- Scaling beyond 8 cores?
- Kernel modifications may be difficult.
- Why not use MPI or RDMA?

Your Opinions

Ideas:

- Secure accept queue sharing with access control
- Is MegaPipe useful beyond network I/O?
- Beyond Linux?
- Load balancing for socket partitioning.
- Lower syscall cost.
- Combining RouteBricks with MegaPipe.
- What hardware optimizations can be applied?
- Network IO interface that is both high performance and POSIX-compliant.
- Automate application modifications to use MegaPipe.

Discuss!

What other sources of performance overhead remain?