
Programmable and Universal Packet
Scheduling

ECE/CS598HPN

Radhika Mittal

Scheduling not programmable

Two complementary papers

• Programmable packet scheduling, HotNets’15, SIGCOMM’16

• Universal packet scheduling, HotNets’15, NSDI’16

Two complementary papers

• Programmable packet scheduling, HotNets’15, SIGCOMM’16

• Universal packet scheduling, HotNets’15, NSDI’16

Two complementary papers

• Programmable packet scheduling, HotNets’15, SIGCOMM’16
• Many slides borrowed from Anirudh Sivaraman.

• Universal packet scheduling, HotNets’15, NSDI’16

The Push-In First-Out Queue

• Many algorithms determine transmission order at packet arrival
• Relative order of packet transmissions of packets in the queue

doesn’t change with future arrivals
• Examples:

• SJF: Order determined by flow size
• FCFS: Order determined by arrival time

• Push-in first-out queues (PIFO) is a good abstraction to capture
such algorithms.
• packets are pushed into an arbitrary location based on a priority,

and dequeued from the head
• First used as a proof construct by Chuang et. al.

The PIFO abstraction

• PIFO: A sorted array that let us insert an entry (packet or
PIFO pointer) based on a programmable priority
• Entries are always dequeued from the head
• If an entry is a packet, dequeue and transmit it
• If an entry is a PIFO, dequeue it, and continue recursively

A programmable scheduler

Classification &
Transmission

Order
Computation Push-In-First-Out

(PIFO) Queue

SchedulerIngress Pipeline

Classification &
Transmission

Order
Computation

pFabric using PIFO

Push-In-First-Out
(PIFO) Queue

Scheduler

1. f = flow(p)
2. p.prio = f.rem_size

Weighted Fair Queuing

1. f = flow(p)
2. p.start = T[f].finish
3. T[f].finish = p.start + p.len / p.w
4. p.prio = p.start Push-In-First-Out

(PIFO) Queue

SchedulerIngress Pipeline

Traffic Shaping

1. update tokens
2. p.send = now +

(p.len - tokens) / rate;
3. p.prio =p.send Push-In-First-Out

(PIFO) Queue

SchedulerIngress Pipeline

Composing PIFOs

Hierarchical packet-fair
queueing (HPFQ)

A	(0.5) B	(0.5)

1
(0.1)

2
(0.9)

3
(0.3)

4
(0.7)

PIFO-root
(WFQ on A and B)

PIFO-A
(WFQ on 1 and 2)

PIFO-B
(WFQ on 3 and 4)

1 32 42

A B A B A

Composing PIFOs

PIFO in hardware

•Meets timing at 1 GHz on a 16 nm node
• 5 % area overhead for 3-level hierarchy
•Challenges wisdom that sorting is hard

Min Max
Range search CAM

MiniPIFO
Mini-PIFO bank

1 10
10 100
100 300
300 500
500 1000

1000 2000

1 10
10 100
100 300
300
500
1000

500
1000
2000

128 elements

1000 mini-PIFOs

Programmable packet scheduling,
SIGCOMM’16

D50 B40 A30 D25 B20 C9 C8 C7 B5 A5 B3 A1

D25 C7 B3 A1

A:	30,	5

B:	40,	20,	5,	3

C:	9,	8,	7

D:	50,	25

Rank Store

Single array PIFO can be expensive
(lots of comparator circuits required)

Flow scheduler
(fewer comparator circuits

required)

Key limitation of the PIFO abstraction

• When priority (relative ordering between two packets)
changes after enqueuing them.

• …

Your opinions

• Pros:
• PIFO and calendar queues are simple and powerful abstractions.
• Idea of making scheduling programmable is useful and exciting.
• Shows feasibility of implementation.
• Can be used to implement composite scheduling algorithms.

Your opinions

• Cons:
• Supports only a finite range of priorities.
• How to handle multiple flows with different scheduling requirements?
• No analysis of how expressive PIFO/calendar queues are.
• In-switch computation of priority might be limited by switch

capabilities.
• How splitting of mini-PIFOs is handled is questionable.

Your opinions

• Ideas
• How to use PIFOs?
• Programming language and compiler for scheduling?
• How will an operator interact with a programmable scheduler?
• Anything else in the switch that could be made programmable?
• Analyze the need for programmable scheduling.
• Pros and cons compared to UPS.

Two complementary papers

• Programmable packet scheduling, HotNets’15, SIGCOMM’16

• Universal Packet Scheduling, HotNets’15, NSDI’16

•Many different algorithms
• FIFO, FQ, virtual clocks, priorities…

•Many different goals
• fairness, small packet delay, small FCT…

•Many different contexts
•WAN, datacenters, cellular…

Many Scheduling Algorithms

• Implemented in router hardware.

• How do we support different scheduling algorithms for different
requirements?
• Option 1: Change router hardware for each new algorithm
• Option 2: Implement all scheduling algorithms in hardware
• Option 3: Programmable scheduling hardware

Many Scheduling Algorithms

• Implemented in router hardware.

• How do we support different scheduling algorithms for different
requirements?
• Option 1: Change router hardware for each new algorithm
• Option 2: Implement all scheduling algorithms in hardware
• Option 3: Programmable scheduling hardware

Many Scheduling Algorithms

• Implemented in router hardware.

• How do we support different scheduling algorithms for different
requirements?
• Option 1: Change router hardware for each new algorithm
• Option 2: Implement all scheduling algorithms in hardware
• Option 3: Programmable scheduling hardware

Many Scheduling Algorithms

• Implemented in router hardware.

• How do we support different scheduling algorithms for different
requirements?
• Option 1: Change router hardware for each new algorithm
• Option 2: Implement all scheduling algorithms in hardware
• Option 3: Programmable scheduling hardware

Many Scheduling Algorithms

Is there a universal packet
scheduling algorithm?

We are asking a new question…..

How do we support different scheduling algorithms for
different requirements?

UPS: Universal Packet Scheduling Algorithm

A single scheduling algorithm that
can imitate the network-wide output
produced by any other algorithm.

How can a single
algorithm imitate all

others?

Network Model

Input Traffic

INGRESS

CORE NETWORK

Scheduling
Algorithm

Network Model

Input Traffic

INGRESS

CORE NETWORK

Network Model

INGRESS

Input Traffic

(Optional)
Header

Initialization

Scheduling
Algorithm

Output Traffic

CORE NETWORK
EGRESS

Network Model

INGRESS

Input Traffic

(Optional)
Header

Initialization

Scheduling
Algorithm

Output Traffic

CORE NETWORK
EGRESS

Output Traffic tied to
Scheduling Algorithm

Network Model

INGRESS

Input Traffic

(Optional)
Header

Initialization

Priority
Scheduling

Output Traffic

CORE NETWORK
EGRESS

Goal: Minimize Mean FCT

Priority
Value

Flow Size

Network Model

INGRESS

Input Traffic

(Optional)
Header

Initialization
FQ Output Traffic

CORE NETWORK
EGRESS

Goal: Fairness

Network Model

INGRESS

Input Traffic

(Optional)
Header

Initialization
WFQ Output Traffic

CORE NETWORK
EGRESS

Goal: Weighted Fairness

Flow
Weights

Network Model

* Uses packet header state to make scheduling decisions

INGRESS

Input Traffic

Header
Initialization

Scheduling
Algorithm* Output Traffic

CORE NETWORK
EGRESS

Output Traffic tied to Header Initialization

Header
Initialization

Network Model

INGRESS

Input Traffic

Smart
Header

Initialization
UPS? Output Traffic

CORE NETWORK
EGRESS

Header
Initialization

How do we formally
define and evaluate

a UPS?

Defining a UPS

Theoretical Viewpoint:
Can it replay a given schedule?

Practical Viewpoint:
Can it achieve a given objective?

Theoretical Viewpoint
Can it replay a given schedule?

Original Schedule

Input Traffic

(Optional)
Header

Initialization

INGRESS CORE NETWORK

Arbitrary
Scheduling
Algorithm

Output Times

o(p) for a packet p
EGRESS

Only requirement from original schedule:
Output Times are viable

Replaying the Schedule, given o(p)

Input Traffic

Header
Initialization
(using o(p))

INGRESS CORE NETWORK

Output Times

o’(p) for a packet p
EGRESS

For every packet p, o’(p) ≤ o(p)

UPSHeader
Initialization

Pragmatic Constraints on a UPS

Input Traffic

Output Times
Header

Initialization
(using o(p)) o’(p) for a packet p

Obliviousness: For initializing p’s
header, use only o(p) and path(p)

INGRESS CORE NETWORK EGRESS

UPSHeader
Initialization

Pragmatic Constraints on a UPS

Input Traffic

Output Times
Header

Initialization
(using o(p)) o’(p) for a packet p

Obliviousness: For initializing p’s
header, use only o(p) and path(p)

INGRESS CORE NETWORK EGRESS

UPSHeader
Initialization

Pragmatic Constraints on a UPS

Input Traffic

Output Times

o’(p) for a packet p

Obliviousness: For initializing p’s
header, use only o(p) and path(p)

INGRESS CORE NETWORK EGRESS

UPS
Header

Initialization
(using o(p))

Header
Initialization

Pragmatic Constraints on a UPS

Input Traffic

Output Times

o’(p) for a packet p

Obliviousness: For initializing p’s
header, use only o(p) and path(p)

INGRESS CORE NETWORK EGRESS

UPS
Header

Initialization
(using o(p))

Header
Initialization

Pragmatic Constraints on a UPS

Input Traffic

Output Times

o’(p) for a packet p

Obliviousness: For initializing p’s
header, use only o(p) and path(p)

Limited State: Scheduling can use only
header state and static information

INGRESS CORE NETWORK EGRESS

UPS
Header

Initialization
(using o(p))

Header
Initialization

Pragmatic Constraints on a UPS

Input Traffic

Output Times

o’(p) for a packet p

Obliviousness: For initializing p’s
header, use only o(p) and path(p)

Limited State: Scheduling can use only
header state and static information

INGRESS CORE NETWORK EGRESS

UPS
Header

Initialization
(using o(p))

Header
Initialization

We call this Blackbox Initialization

Input Traffic

Output Times

o’(p) for a packet p

Limited State: Scheduling can use only
header state and static information

INGRESS CORE NETWORK EGRESS

Obliviousness: For initializing p’s
header, use only o(p) and path(p)

UPS
Header

Initialization
(using o(p))

Header
Initialization

Basic Existence and Non-existence Results

There exists a UPS under Omniscient Initialization
when scheduling time at every hop is known

No UPS exists under Blackbox Initialization
when only the final output time is known

See NSDI’16 paper for proofs.

How close can
we get to a UPS?

Key Result: Depends on congestion points

No. of Congestion Points
per Packet

General

1 ✓

2 ✓

3 ✗

See NSDI’16 paper for proofs.

Can we achieve
this upper bound?

Yes, LSTF!

Can we achieve
this upper bound?

Yes, LSTF!

Least Slack Time First

•Packet header initialized with a slack value
• slack = maximum tolerable queuing delay

•At the routers
• Schedule packet with least slack time first
• Update the slack by subtracting the wait time

Key Results

No. of Congestion Points
per Packet

General LSTF

1 ✓ ✓

2 ✓ ✓

3 ✗ ✗

See NSDI’16 paper for proofs.

Not all algorithms achieve upper bound

No. of Congestion Points
per Packet

General LSTF Priorities

1 ✓ ✓ ✓

2 ✓ ✓ ✗

3 ✗ ✗ ✗

See NSDI’16 paper for proofs.

How well does
LSTF perform
empirically?

Empirically, LSTF is (almost) universal

• ns-2 simulation results on realistic network settings

- Less than 3% packets missed their output times

- Less than 0.1% packets are late by more than
one transmission time

Summarizing the theoretical viewpoint

• Evaluate the ability to replay a schedule, given its
final output times

• Analytical Results:
- No UPS exists
- LSTF comes as close to a UPS as possible

• Empirical Results: LSTF is almost universal!

Practical Viewpoint
Can it achieve a given objective?

Achieving various network objectives

• Slack assignment based on heuristics

• Comparison with state-of-the-art

• Three objective functions
- Tail packet delays
- Mean Flow Completion Time
- Fairness

Tail Packet Delays

Slack Assignment: Same slack for all packets

State-of-the-art: FIFO, FIFO+

Results:
• Identical to FIFO+.
• Smaller tail packet delays compared to FIFO.

Mean Flow Completion Time

Slack Assignment: Proportional to flow size

State-of-the-art: SJF, SRPT

Results:
• Mean FCTs comparable to both SJF and SRPT.

Fairness
Slack Assignment: Inspired by Virtual Clocks

slack(p0) = 0
slack(pi) = max(0, slack(pi-1) + (1/rest) – (i(pi) – i(pi-1))
rest = Estimate of fair share rate

State-of-the-art: Fair Queuing (FQ)

Results:
• Eventual convergence to fairness for long-lived flows.
• FCTs roughly comparable to FQ for short-lived flows.

• Higher sensitivity to fair share rate estimate (rest)

Results Summary

• Theoretical results show that
- There is no UPS under blackbox initialization
- LSTF comes as close to a UPS as possible
- Empirically, LSTF is very close

• LSTF can be used in practice to achieve a
variety of network-wide objectives.

Implication

• Less need for many different scheduling
algorithms.

• Can just use LSTF, with varying
initializations.

Limitations

• Policies for which the required information is not
available during header initialization at the ingress.
• When relative ordering between two packets changes after

enqueuing them.
• Class-based weighted fairness.

Your opinions

• Pros:
• Good/intriguing motivation.
• Understanding universality in terms of congestion points is useful.
• Both theoretical and empirical results.
• Concrete usecases.

Your opinions

• Cons:
• No. of congestion points can be high in practice.
• No discussion of implementation overhead.
• A systematic framework for how to use LSTF/UPS.
• What happens when there are more than one objectives/goals?
• Is the theoretical model reasonable?
• Lack of real internet-wide implementation.

Your opinions

• Ideas
• Use LSTF for a broader range of scheduling algorithms.
• Under what (relaxed) conditions is universality feasible?
• Universal AQM scheme?
• Are results valid only within data center or AS, or across the Internet

(multiple ASes)?
• What are the difficulties of implementing LSTF?
• Better way to estimate o(p).

Recent work along similar lines…

• Most switches have only 8-16 queues. What’s the best we can do
with existing switch hardware?
• SP-PIFO (NSDI’20)

• A packet’s priority may change after it has been enqueued at a
particular priority level. How to handle that?
• Programmable Calendar Queues (NSDI’20)

