Through-Wall Human Sensing with RF Signals

Mingmin Zhao
Sensing Humans in the Environment
Occlusion is a fundamental challenge for vision.
Vision also fails in bad lighting conditions
Want to see the human through walls & in the dark
Want to see the human through walls & in the dark
RF-based approach

DARPA see-through-wall (mid 2000)

MIT Lincoln Lab (2011)
RF-based Approach

Wi-Vi and WiTrack from MIT (2013)
RF-based Approach

Antenna array: AoA
FMCW: range
Outline

1. Challenges in RF signals for human sensing

2. Through-Wall human pose estimation (2D & 3D)

3. A framework for human sensing with RF signals
 a. Human Mesh Recovery
 b. Human Action Recognition
 c. Human Identification
How to train a model to estimate pose from RF?

Vertical RF heatmaps

Horizontal RF heatmaps
Challenge: How to obtain labeled data?

annotate skeleton?

annotate skeleton?
Idea: Cross-Modal Supervision

RGB images

Teacher Network (Vision-based)

supervisory signals

Student Network (RF-Based)

RF heatmaps
During inference

RGB images

Teacher Network (Vision-based)

supervisory signals

Student Network (RF-based)

RF heatmaps
Challenge: Specularity of Human Body
A Snapshot Doesn’t Have Skeleton
Solution: Use Human Motion Across Time
Solution: Use a series of RF snapshots
Solution: Extracts limbs and fills in missing parts
Challenge: 4D signals are too large for NN!
Solution: Neural Network Decomposition

Theorem (informal): An RF-based 4D Neural Networks is equivalent to a combination of two 3D Neural Networks.
How about Multipath?
RF-Pose
Convolution Neural Network (CNN):
Fully Convolution Network (FCN):
Model Architecture of RF-Pose:
Through-wall poses using **only** RF

RGB (visualization only)

Skeletons

Confidence Maps
RF-Pose also works in bad lighting
RF-Pose works with different environment and daily activities.

RGB (visualization only)

Skeletons

Confidence Maps
RF-Pose3D
Model Design: Complexity

3D RF tensor \rightarrow \text{Neural Network} \rightarrow \text{OpenPose} \rightarrow \text{RGB images} \rightarrow \text{2D skeletons} \rightarrow \text{Triangulation} \rightarrow \text{3D skeletons}
Model Design: Complexity

Implications:
- Large neural networks
- Huge amount of labeled examples
- Very hard to train
Solution: Two-Stage Model for Task Separation

Network1 zooms in on people to remove extraneous information

Network2 extracts pose

Network2

Solution: Two-Stage Model for Task Separation

Network1

zooms in on people to remove extraneous information

Network2 extracts pose

Network2

Solution: Two-Stage Model for Task Separation

Network1

zooms in on people to remove extraneous information

Network2 extracts pose

Network2

Solution: Two-Stage Model for Task Separation

Network1

zooms in on people to remove extraneous information

Network2 extracts pose

Network2

Solution: Two-Stage Model for Task Separation

Network1

zooms in on people to remove extraneous information

Network2 extracts pose

Network2

Solution: Two-Stage Model for Task Separation

Network1

zooms in on people to remove extraneous information

Network2 extracts pose

Network2

Solution: Two-Stage Model for Task Separation

Network1

zooms in on people to remove extraneous information

Network2 extracts pose

Network2

Solution: Two-Stage Model for Task Separation

Network1

zooms in on people to remove extraneous information

Network2 extracts pose

Network2
Automatic labeling of 3D poses with cameras

- Vision Model
- Vision Model
- Vision Model

Multi-view Geometry

3D poses?
Implementation

- HW is similar to past work; uses an FMCW radio with antenna arrays.
- Model implemented with decomposition in PyTorch.
- Collected 16 hours of data at 22 different places on our campus.
- Model training takes 2 days with 4 GPUs.
How Accurate is the Skeleton?

Metric: Keypoint localization error

Predicted Skeleton

Ground Truth Skeleton
Skeleton Accuracy for Different Keypoints

Keypoint Location error (cm)
A Top-down Framework for Human Sensing with RF

Proposal Net

Task-specific Net

Task-specific Net
Human Mesh Recovery
Human Action Recognition

Wireless Stream
- Wireless Signals
- Skeleton Generation Network
- 3D Skeleton Sequences

Vision Stream
- Video Frames
- AlphaPose + 3D Triangulate
- 3D Skeleton Sequences

Modality-independent Action Detection Framework
- Attention Feature Learning Network
- Person-Level Feature
- Multi-Proposal Module

Propositions:
- Person 1 Feat
- Person 2 Feat
- Person N Feat
- Inter-Proposal 1
- Inter-Proposal 2
- Inter-Proposal N
- Proposal 1
- Proposal 2
- Proposal N

Actions:
- Hand Shaking
- Brushing teeth
- None
Through-Wall Human Sensing with RF Signals

For more information, please visit our websites:

RF-Pose: RFPose.csail.mit.edu
RF-Pose3D: RFPose3D.csail.mit.edu
RF-Avatar: RFAvatar.csail.mit.edu
RF-Action: RF-Action.csail.mit.edu