

Unsupervised Word Sense Disambiguation Rivaling Supervised Methods

David Yarowsky (1995)

By Vincent Medenilla 2/3/2022

Table of Content

Introduction
Literature Review/Theory
Algorithm
Evaluation
Conclusions

Introduction

Definitions

Sense Disambiguation - is the problem of determining which "sense" (meaning) of a word is activated using the word in a particular context

Collocation – two or more words that tend to appear frequently together

Discourse – any document or a piece of writing

Accuracy – how often a target word (that appeared multiple times) contains one sense (the majority sense) in a document

Applicability – how often a target word appears more than once in a discourse

Polysemous – words having multiple meanings

Seed collocations – initial main/major collocations of a word in a discourse

Introduction

Background

- Word sense disambiguation had been a major problem in NLP for over forty years (early 1990s)
- Major problem was "sense" vagueness
- Gale, Church, and Yarowsky (1992) utilized parallel text such as Canadian Hansards
- Decision list based on Supervised algorithm (Yarowsky, 1994)

Introduction

Main Ideas

- Unsupervised algorithm that can disambiguate word senses in a large untagged corpus
- Avoid tedious and time-consuming hand-tagging data training
- **■** Two properties of human language/algorithm constraints:
 - 1. One sense per collocation
 - 2. One sense per discourse

Literature Review/Theory

One sense per discourse

- words tend to exhibit only one sense in a given discourse (Gale, Church, and Yarowsky)
- tested on a set of 37,232 examples, hand-tagged over 3 years

The one-sense-per-di	scourse hypothesis:
----------------------	---------------------

Word	Senses	Accuracy	Applicblty
plant	living/factory	99.8 %	72.8 %
tank	vehicle/contnr	99.6 %	50.5 %
poach	steal/boil	100.0 %	44.4 %
palm	tree/hand	99.8 %	38.5 %
axes	grid/tools	100.0 %	35.5 %
sake	benefit/drink	100.0 %	33.7 %
bass	fish/music	100.0 %	58.8 %
space	volume/outer	99.2 %	67.7 %
motion	legal/physical	99.9 %	49.8 %
crane	bird/machine	100.0 %	49.1 %
Averag	99.8 % 50.1 %		

Literature Review/Theory

One sense per collocation

- observed and quantified by Yarowsky (1993)
- strongest for immediately adjacent collocations and weakens with distance
- stronger with content words than function words
- reliability of 97% for adjacent content words
- Four types of collocation:
 - 1. the word which collocates with the target word appears in a left window of 2-10 words relatively to the target word
 - 2. it is the previous word
 - 3. it is the next word
 - 4. it appears in a right window of 2-10 words

The algorithm was illustrated by the disambiguation of 7538 instances of polysemous words:

STEP 1: Identify all the polysemous words in a large corpus, storing their contexts as lines in the

original (untagged) training set

Sense	Training Examples (Keyword in Context)
?	company said the plant is still operating
?	Although thousands of plant and animal species
?	zonal distribution of plant life
?	to strain microscopic plant life from the
?	vinyl chloride monomer plant, which is
?	and Golgi apparatus of plant and animal cells
?	computer disk drive plant located in
?	divide life into plant and animal kingdom
?	close-up studies of plant life and natural
?	Nissan car and truck plant in Japan is
?	keep a manufacturing plant profitable without
?	molecules found in plant and animal tissue
?	union responses to plant closures
?	animal rather than plant tissues can be
?	many dangers to plant and animal life
?	company manufacturing plant is in Orlando
?	growth of aquatic plant life in water
?	automated manufacturing plant in Fremont ,
?	Animal and plant life are delicately
?	discovered at a St. Louis plant manufacturing
?. ?. ?. ?. ?. ?. ?. ?. ?. ?. ?. ?. ?. ?	computer manufacturing plant and adjacent
?	the proliferation of plant and animal life
?	promote of promote and animote into

Step 2

- For each possible sense of the word, group a small number of training examples that showcase the sense
- Done by identifying a small number of seed collocations representative of each sense then tagging all training examples containing the seed collocates with the seed's sense label
- The words "life" and "manufacturing" are used as seed collocates for the example shown
- "?" represents untagged residual
- Resulted in 82 examples of living plants (1%), 106 examples of manufacturing (1%), and 7350 residual/unsure (98%)

Sense	Training Examples (Keyword in Context)
A	used to strain microscopic plant life from the
A	zonal distribution of plant life
A	close-up studies of plant life and natural
A	too rapid growth of aquatic plant life in water
A	the proliferation of plant and animal life
A	establishment phase of the plant virus life cycle
A	that divide life into plant and animal kingdom
A	many dangers to plant and animal life
A	mammals . Animal and plant life are delicately
A	beds too salty to support plant life . River
A	heavy seas, damage, and plant life growing on
A	
? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ?	vinyl chloride monomer plant, which is
?	molecules found in plant and animal tissue
7	Nissan car and truck plant in Japan is
?	and Golgi apparatus of plant and animal cells
?	union responses to plant closures
?	*** ***
?	*** ***
?	cell types found in the plant kingdom are
?	company said the plant is still operating
?	Although thousands of plant and animal species
?	animal rather than plant tissues can be
	computer disk drive plant located in
В	
В	automated manufacturing plant in Fremont
В	vast manufacturing plant and distribution
В	chemical manufacturing plant, producing viscose
В	keep a manufacturing plant profitable without
В	computer manufacturing plant and adjacent
В	discovered at a St. Louis plant manufacturing
В	copper manufacturing plant found that they
В	copper wire manufacturing plant, for example
В	's cement manufacturing plant in Alpena
В	polystyrene manufacturing plant at its Dow
В	company manufacturing plant is in Orlando

STEP 3:

- train the supervised classification algorithm on the Sense A/ Sense B seed sets
- devise a decision list by identifying other collocations that reliably partition the seed training data, ranked by the purity of the distribution
- the purity of distribution is computed for each collocation x and sense A as the log-likelihood ratio for that sense given that collocation: $\log \frac{P(sense-A \mid collocation-x)}{P(sense-B \mid collocation-x)}$, then apply smoothing to avoid 0 values

	decision list for plant (abbrevi	
	Collocation	Sense
8.10	plant life	\Rightarrow A
7.58	manufacturing plant	\Rightarrow B
7.39	life (within $\pm 2\text{-}10 \text{ words}$)	\Rightarrow A
7.20	manufacturing (in ± 2 -10 words)	⇒ B
6.27	animal (within ±2-10 words)	$\Rightarrow A$
4.70	equipment (within ±2-10 words)	\Rightarrow B
4.39	employee (within ±2-10 words)	⇒ B
4.30	assembly plant	\Rightarrow B
4.10	plant closure	\Rightarrow B
3.52	plant species	\Rightarrow A
3.48	automate (within $\pm 2-10$ words)	⇒ B
3.45	microscopic plant	$\Rightarrow A$

STEP 3 (cont.):

- Apply the resulting classifier to the whole data set
- Classify the residual/tagged "?" as sense A or sense B with a probability above a certain threshold
 - Results in an augmented collocation sets

STEP 3 (cont.):

- following the one sense per discourse principle, label previously untagged contexts:

Change in tag	Disc. Numb.	Training Examples (from same discourse)
$A \rightarrow A$	724	the existence of plant and animal life
$A \rightarrow A$	724	classified as either plant or animal
? - A	724	Although bacterial and plant cells are enclosed
$A \rightarrow A$	348	the life of the plant, producing stem
$A \rightarrow A$	348	an aspect of plant life , for example
? → A	348	tissues ; because plant egg cells have
? → A	348	photosynthesis, and so plant growth is attuned

- may lead to new collocations that might be related to already identified collocations

- repeat Step 3 iteratively

STEP 4:

- algorithm converges on a stable residual set
- resolves conflicts by using only the single most reliable piece of evidence, not a combination of related collocations

STEP 5:

- original untagged corpus is then tagged with sense labels and probabilities
 - the new model can now be applied to new data
 - notice that the original seeds are replaced

Initial decision list for plant (abbreviated)					
LogL	Collocation	Sense			
8.10	plant life	⇒ A			
7.58	manufacturing plant	⇒ B			
7.39	life (within $\pm 2\text{-}10$ words)	⇒ A			
7.20	manufacturing (in ±2-10 words)	⇒ B			
6.27	animal (within ±2-10 words)	⇒ A			
4.70	equipment (within ±2-10 words)	⇒ B			
4.39	employee (within ±2-10 words)	⇒ B			
4.30	assembly plant	⇒ B			
4.10	plant closure	⇒ B			
3.52	plant species	⇒ A			
3.48	automate (within ±2-10 words)	⇒B			
3.45	microscopic plant	$\Rightarrow A$			
		Layed			

LogL	Collocation	Sense
10.12	plant growth	⇒ A
9.68	car (within $\pm k$ words)	\Rightarrow B
9.64	plant height	\Rightarrow A
9.61	union (within $\pm k$ words)	\Rightarrow B
9.54	equipment (within $\pm k$ words)	\Rightarrow B
9.51	assembly plant	\Rightarrow B
9.50	nuclear plant	⇒ B
9.31	flower (within $\pm k$ words)	\Rightarrow A
9.24	job (within ±k words)	\Rightarrow B
9.03	fruit (within ±k words)	$\Rightarrow A$
9.02	plant species	\Rightarrow A

Example:

..."the loss of animal and *plant* species through extinction...,"

Based on the final decision list, the collocation "plant species" has a LogL value of 9.02, which means it refers to sense-A which is life or living plant

- Words used were randomly selected from previous literature (Yarowski) like drug = drogue/medicament
- Schultze's 1992 disambiguation experiments (tank, space, motion, and plant)
- 460 million word corpus containing news articles, scientific abstracts, spoken transcripts, and novels

Schutze's "Dimension of Meaning" Paper (1992):

- unsupervised algorithm, trained on a New York Times corpus
- represented the semantics of words and contexts as vectors
- applied SVD to reduce dimensionality

Results

(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)	(11)
			%		Seed Training Options (7) + 0		OSPD			
	90	Samp.	Major	Supvsd	Two	Dict.	Top	End	Each	Schütze
Word	Senses	Size	Sense	Algrtm	Words	Defn.	Colls.	only	Iter.	Algrthm
plant	living/factory	7538	53.1	97.7	97.1	97.3	97.6	98.3	98.6	92
space	volume/outer	5745	50.7	93.9	89.1	92.3	93.5	93.3	93.6	90
tank	vehicle/container	11420	58.2	97.1	94.2	94.6	95.8	96.1	96.5	95
motion	legal/physical	11968	57.5	98.0	93.5	97.4	97.4	97.8	97.9	92
bass	fish/music	1859	56.1	97.8	96.6	97.2	97.7	98.5	98.8	-
palm	tree/hand	1572	74.9	96.5	93.9	94.7	95.8	95.5	95.9	-
poach	steal/boil	585	84.6	97.1	96.6	97.2	97.7	98.4	98.5	-
axes	grid/tools	1344	71.8	95.5	94.0	94.3	94.7	96.8	97.0	-
duty	tax/obligation	1280	50.0	93.7	90.4	92.1	93.2	93.9	94.1	_
drug	medicine/narcotic	1380	50.0	93.0	90.4	91.4	92.6	93.3	93.9	-
sake	benefit/drink	407	82.8	96.3	59.6	95.8	96.1	96.1	97.5	-
crane	bird/machine	2145	78.0	96.6	92.3	93.6	94.2	95.4	95.5	-
AVG		3936	63.9	96.1	90.6	94.8	95.5	96.1	96.5	92.2

Seed Training Options

- 1. Two words: hand-tagged like "plant life" and "manufacturing plant"
 - easy to implement but not so robust
- 2. Dictionary definitions: find significantly frequent words w.r.t the most reliable collocational relationships (decision list)
- 3. Top collocates label salient corpus collocates

One Sense Per Discourse constraint

- Instead of treating tokens of target word independently, we assume (put bias) that they likely exhibit the same sense
- Error correction in step 4
- Example: "[discourse is plant life]...sell plants especially locally grown ones..."

Conclusions

- Utilized one sense per discourse and one sense per collocation properties of language
- Outperformed Schultze's unsupervised algorithm (96.7% to 92.2%) on 4 words
- Achieved relatively same performance as Supervised model (95.5% to 96.1%)
- Shown better results with one sense per discourse restraint (96.5% to 96.1%)
- The model successfully shown improvement from supervised wordsense disambiguation's tedious hand-tagging

Final Thoughts/Discussions

- Were One-sense-per-collocations and one-sense-per-discourse fair assumptions/properties?
- What about small corpus?

The Grainger College of Engineering

UNIVERSITY OF ILLINOIS URBANA-CHAMPAIGN