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Logistics

• Project proposal discussions in office hours

• Assignment 3 due March 11 
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UNIT 2
• Low-Resource NLP

• Summarization

• Dialog Systems
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Conversational Agents (= Dialog Systems) 
• Personal Assistants

• Siri, Alexa, Cortana

• Robots

• Healthcare and social applications

• Chitchat
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Conversational Agents

• Chitchat (Chatbots)

• Task-based Dialog Agents
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Human Conversation

2 CHAPTER 24 • CHATBOTS & DIALOGUE SYSTEMS

contrast, chatbots are systems designed for extended conversations, set up to mimic
the unstructured conversations or ‘chats’ characteristic of human-human interaction,
mainly for entertainment, but also for practical purposes like making task-oriented
agents more natural.1 In Section 24.2 we’ll discuss the three major chatbot architec-
tures: rule-based systems, information retrieval systems, and encoder-decoder gen-
erators. In Section 24.3 we turn to task-oriented agents, introducing the frame-based
architecture (the GUS architecture) that underlies most task-based systems.

24.1 Properties of Human Conversation

Conversation between humans is an intricate and complex joint activity. Before we
attempt to design a conversational agent to converse with humans, it is crucial to
understand something about how humans converse with each other. Consider some
of the phenomena that occur in the conversation between a human travel agent and
a human client excerpted in Fig. 24.1.

C1: . . . I need to travel in May.
A2: And, what day in May did you want to travel?
C3: OK uh I need to be there for a meeting that’s from the 12th to the 15th.
A4: And you’re flying into what city?
C5: Seattle.
A6: And what time would you like to leave Pittsburgh?
C7: Uh hmm I don’t think there’s many options for non-stop.
A8: Right. There’s three non-stops today.
C9: What are they?
A10: The first one departs PGH at 10:00am arrives Seattle at 12:05 their time.

The second flight departs PGH at 5:55pm, arrives Seattle at 8pm. And the
last flight departs PGH at 8:15pm arrives Seattle at 10:28pm.

C11: OK I’ll take the 5ish flight on the night before on the 11th.
A12: On the 11th? OK. Departing at 5:55pm arrives Seattle at 8pm, U.S. Air

flight 115.
C13: OK.
A14: And you said returning on May 15th?
C15: Uh, yeah, at the end of the day.
A16: OK. There’s #two non-stops . . . #
C17: #Act. . . actually #, what day of the week is the 15th?
A18: It’s a Friday.
C19: Uh hmm. I would consider staying there an extra day til Sunday.
A20: OK. . . OK. On Sunday I have . . .

Figure 24.1 Part of a phone conversation between a human travel agent (A) and human
client (C). The passages framed by # in A16 and C17 indicate overlaps in speech.

Turns

A dialogue is a sequence of turns (C1, A2, C3, and so on), each a single contributionturn
from one speaker to the dialogue (as if in a game: I take a turn, then you take a turn,

1 By contrast, in popular usage, the word chatbot is often generalized to refer to both task-oriented and
chit-chat systems; we’ll be using dialogue systems for the former.
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Conversation as sequence of turns
• Turns

• As if conversation was a game
• Turn-taking issues

• When to take the floor?
• When to yield the floor?

• Interruptions and end-pointing
• "End-pointing" speech system deciding whether 

user has stopped talking
• Grounding

• acknowledging that the hearer has understood the 
speaker



Grounding is important 

System: Did you want to review some more of your 
profile?
Caller: No.
System: What’s next?

System: Did you want to review some more of your 
profile?
Caller: No.
System: Okay, what’s next?

Cohen et al (2004)
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Conversation as Speech Acts
Constatives: committing the speaker to something’s being the 
case (answering, claiming, confirming, denying, disagreeing, 
stating) 
Directives: attempts by the speaker to get the addressee to do 
something (advising, asking, forbidding, inviting, ordering, 
requesting) 

Commissives: committing the speaker to some future course of 
action (promising, planning, vowing, betting, opposing) 

Acknowledgments: express the speaker’s attitude regrading 
the hearer with respect to some social action (apologizing, 
greeting, thanking, accepting an acknowledgment) 

I need to travel in July

And you’re flying into what city?



Conversational Initiative (Walker and Whittaker 
1990)

• Conversations controlled by one person
• A reporter interviewing a chef
• This reporter has the conversational initiative

• Normal human conversations---mixed initiative

• Mixed initiative hard for NLP systems
• User initiative (user asks or commands, system responds)
• System initiative (system asks user questions to fill out a form, 

user can't change the direction)



Implicature

Agent: And, what day in May did you want to 
travel?

Client: OK uh I need to be there for a meeting 
that’s from the 12th to the 15th. 



Challenges to Dialog Systems
• Turns

• Dialog acts

• Structure

• Grounding

• Initiative 

• Implicature



Challenges to Dialog Systems
• In addition to challenges of speech

• Prosody
• Rhythm
• Intonation
• Stress

• Together express emotion, emphasis

• Try this sentence changing emphasis to see change in meaning
• I never said she stole my money.



Chatbots!

• Classic
• ELIZA (Weizenbaum 1966)
• PARRY (1968)

• The first system to pass the Turing test!
• Designed to test theories of psychotherapy



Eliza: Weizenbaum (1966)
•Men are all alike.
IN WHAT WAY
They're always bugging us about something or other. 
•CAN YOU THINK OF A SPECIFIC EXAMPLE 
•Well, my boyfriend made me come here.
YOUR BOYFRIEND MADE YOU COME HERE 

•He says I'm depressed much of the time.
I AM SORRY TO HEAR YOU ARE DEPRESSED 
•...

•WHO ELSE IN YOUR FAMILY TAKES CARE 0F YOU?
My father
YOUR FATHER



April 2020

XiaoIce from Microsoft







Chatbot Architectures

•Rule-based

•Corpus-based (from large chat corpus)



Chatbot Architectures

•Rule-based
1. Pattern-action rules (Eliza)

+ a mental model (Parry)

Patient: "I went for a long boat ride”
Psychiatrist: "Tell me about boats”

• You don’t assume she didn’t know what a boat is
• You assume she had some conversational goal
• Chatbots trying to pass the Turing test usually choose some such 

domain



Ethical implications

• People emotionally involved with the program
• One of Weizenbaum's staff asked him to leave the room 

when she talked with ELIZA
• When he suggested that he might want to store all the ELIZA 

conversations for later analysis, people immediately pointed 
out the privacy implications

• Suggesting that they were having quite private 
conversations with ELIZA



Chatbots and Dialogue Systems

Corpus-based Chatbots
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These systems often have an entertainment value, such as Facebook’s Blender-
Bot, a neural chatbot capable of carrying on the kinds of conversations shown in
Fig. 24.2, or Microsoft’s XiaoIce system2 (Zhou et al., 2020), a system that chats
with people on text messaging platforms (Fig. 24.3).

Sure, what do you want to be sung to? I can sing you a song about baking.

Will you sing me a song?

Yes, sing me a song about baking!

Do you want me to sign it to the tune of “Sing Along with Mitch”?

Yes, I would love that.

OK, I’ll try to get it to you by the end of the day. What else do you like to do?

No, sing it to me now!

OK, give me a few days. I’m a teacher, so I don’t have much free time.

Can you at least tell me what the lyrics are?

Sure, it goes like this: “Baking is my favorite thing to do in the world.”

How does the chorus go?

It goes: BAKING IS MY FAVORITE THING TO DO IN THE WORLD!

Wow, sounds like a bop.

I know, right?  It’s so catchy. I can’t get it out of my head.

Figure 24.2 A conversation between a user (left) and BlenderBot (Roller et al., 2020).

;∫{=✏∞`} [Human] Hello, XiaoIce.
;✏∞=`}@�`4œ} £��…

(Í¡«
[XiaoIce] Hello, your profile pic is

interesting. Like I’ve seen
it somewhere.

;∫{=/⌫ [Human] Really?
;✏∞=–�/ÍË®;ÃÑ@ [XiaoIce] Is it a comic character?
;∫{=`�HÂSÑ [Human] How do you know that?
;✏∞=`⌧ [XiaoIce] Guess.
;∫{=æS`/�∫⌫� [Human] Are you human?
;✏∞=Ÿ*�`å⌘⇢JJ1ÂSÜ [XiaoIce] Well, you’ll know it after

chatting with me more.

;∫{=`�/∫Âz˝:h∫H [Human] Aren’t you an Al chatbot?
;✏∞=/»�7�⌘�⇢∑∞∞Ñ˘

Ö`Ñ
[XiaoIce] So what? I won’t be

indifferent to you.

;∫{=`˝ ¿Hü˝J [Human] What functions do you have?
;✏∞=⌘ 200⇢*skills�e�Ù˙

`Ñ�B
[XiaoIce] I have over 200 skills. Just

name one you need.
Figure 24.3 A sample Chinese conversation from the XiaoIce chatbot with translations (Zhou et al., 2020).

Yet starting from the very first system, ELIZA (Weizenbaum, 1966), chatbots
have also been used for practical purposes like testing theories of psychological

2 XiaoIce is a somewhat confusing translation of the systems Chinese name✏∞, ‘Xiao Bing’, which
means Little Bing or Little Ice.

BlenderBot
(Roller et al. 2020)



XiaoIce (Zhou et al., 2020)
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Two architectures
• Response by retrieval 

• Use information retrieval to pick a response from corpus that 
is appropriate given the dialogue context.

• Response by generation
• Use a language model or encoder-decoder to generate the 

response given the dialogue context

24.2 • CHATBOTS 11

The IR-based approach can be extended in various ways, such as by using more
sophisticated neural architectures (Humeau et al., 2020), or by using a longer context
for the query than just the user’s last turn, up to the whole preceding conversation.
Information about the user or sentiment or other information can also play a role.

Response by generation An alternate way to use a corpus to generate dialogue is
to think of response production as an encoder-decoder task— transducing from the
user’s prior turn to the system’s turn. We can think of this as a machine learning
version of ELIZA; the system learns from a corpus to transduce a question to an
answer. Ritter et al. (2011) proposed early on to think of response generation as
a kind of translation, and this idea was generalized to the encoder-decoder model
roughly contemporaneously by Shang et al. (2015), Vinyals and Le (2015), and
Sordoni et al. (2015).

As we saw in Chapter 11, encoder decoder models generate each token rt of the
response by conditioning on the encoding of the entire query q and the response so
far r1...rt�1:

r̂t = argmaxw2V P(w|q,r1...rt�1) (24.3)

Fig. 24.6 shows the intuition of the generator and retriever methods for response
generation. In the generator architecture, we normally include a longer context,
forming the query not just from the user’s turn but from the entire conversation-so-
far. Fig. 24.7 shows an fleshed-out example.

ENCODERquery

q1 … qn

ENCODERresponse

r1 … rn

dot-product
hq hr

ENCODER

q1 … qn

DECODER

r1 …<S>

r1 r2 … rn

(a) Response by Retrieval (b) Response by Generation
Figure 24.6 Two architectures for generating responses for a neural chatbot. In response by
retrieval (a) we choose a response by using a finding the turn in the corpus whose encoding
has the highest dot-product with the user’s turn. In response by generation (b) we use an
encoder-decoder to generate the response.

That is quite an accomplishment and you should be proud!

ENCODER

DECODER

[U:] I finally got promoted today at work!  
[S:] Congrats! That’s great! 
[U:] Thank you! I’ve been trying to get it for a while now!

Figure 24.7 Example of encoder decoder for dialogue response generation; the encoder sees the entire dia-
logue context.

A number of modifications are required to the basic encoder-decoder model to
adapt it for the task of response generation. For example basic encoder-decoder



Response by retrieval: classic IR method

1. Given a user turn q, and a training corpus C of 
conversation

2. Find in C the turn r that is most similar (tf-idf cosine) 
to q

3. Say r

10 CHAPTER 24 • CHATBOTS & DIALOGUE SYSTEMS

talk about knowledge provided to them. For example the Topical-Chat dataset has
11K crowdsourced conversations spanning 8 broad topics (Gopalakrishnan et al.,
2019), and the EMPATHETICDIALOGUES includes 25K crowdsourced conversa-
tions grounded in a specific situation where a speaker was feeling a specific emotion
(Rashkin et al., 2019).

All of these datasets, although large, don’t reach the size of billions of words,
and so many systems first pretrain on large datasets of pseudo-conversations drawn
from Twitter (Ritter et al., 2010), Reddit (Roller et al., 2020), Weibo (ÆZ), and
other social media platforms.

Another common technique is to extract possible responses from knowledge
sources (Wikipedia, news stories) so that a chatbot can tell stories or mention facts
acquired in that way.

Finally, once a chatbot has been put into practice, the turns that humans use to
respond to the chatbot can be used as additional conversational data for training or
finetuning. Here it’s important to have confidence metrics to make sure that these
turns come from conversations that are going well (Hancock et al., 2019). It’s also
crucial in these cases to remove personally identifiable information (PII); see Sec-
tion 24.6.1.

Most corpus based chatbots produce their responses to a user’s turn in context
either by retrieval methods (using information retrieval to grab a response from
some corpus that is appropriate given the dialogue context) or generation methods
(using a language model or encoder-decoder to generate the response given the di-
alogue context) In either case, systems mostly generate a single response turn that
is appropriate given the entire conversation so far (for conversations that are short
enough to fit into a single model’s window). For this reason they are often called
response generation systems. Corpus-based chatbot algorithms thus draw on algo-response

generation
rithms for question answering systems, which similarly focus on single responses
while ignoring longer-term conversational goals.

Response by retrieval The retrieval method of responding is to think of the user’s
turn as a query q, and our job is to retrieve and repeat some appropriate turn r as the
response from a corpus of conversations C. Generally C is the training set for the
system, and we score each turn in C as a potential response to the context q selecting
the highest-scoring one. The scoring metric is similarity: we choose the r that is
most similar to q, using any of the IR methods we saw in Section ??. This can be
done using classic IR techniques to compute tf-idf models for C and q, choosing the
r that has the highest tf-idf cosine with q:

response(q,C) = argmax
r2C

q · r
|q||r| (24.1)

Or, we can use the neural IR techniques of Section ??. The simplest of those is a
bi-encoder model, in which we train two separate encoders, one to encode the user
query and one to encode the candidate response, and use the dot product between
these two vectors as the score (Fig. 24.6a). For example to implement this using
BERT, we would have two encoders BERTQ and BERTR and we could represent the
query and candidate response as the [CLS] token of the respective encoders:

hq = BERTQ(q)[CLS]
hr = BERTR(r)[CLS]

response(q,C) = argmax
r2C

hq ·hr (24.2)



Response by retrieval: neural IR 
method (bi-encoder)
1. Given a user turn q, and a training corpus C of 

conversation
2. Find in C the turn r that is most similar (BERT dot 

product) to q
3. Say r
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Response by generation

• Think of response production as an encoder-decoder task
• Generate each token rt of the response by conditioning on the 

encoding of the entire query q and the response so far r1...rt−1



Response by generation
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Response by generation

• Alternative approach: fine-tune a large language model  on 
conversational data

• The Chirpy Cardinal system (Paranjape et al., 2020), fine-
tunes GPT-2 (Radford et al., 2019), on the 
EmpatheticDialogues dataset (Rashkin et al., 2019). 



Human conversations for corpus-based 
chatbots
•Telephone conversation transcripts

•Switchboard corpus of American English telephone 
conversations

•Movie dialogue
(Danescu-Niculescu-Mizil and Lee 2011, Lison and 
Tiedemann 2016, inter alia) 

• Human-machine chats
• Microblogs:   Twitter or Weibo (微博)



Human conversations for corpus-based 
chatbots

• Topical-Chat dataset has 11K crowdsourced conversations spanning 8 
broad topics (Gopalakrishnan et al., 2019),

• EMPATHETICDIALOGUES includes 25K crowdsourced conversations 
grounded in a specific situation where a speaker was feeling a specific 
emotion (Rashkin et al., 2019). 



Ongoing research problem:
Neural chatbots can get repetitive and boring

•A: Where are you going?
B: I’m going to the restroom.
A: See you later.
B: See you later.
A: See you later.
B: See you later.

A: How old are you?
B: I’m 16.
A: 16?
B: I don’t know what you are talking about.
A: You don’t know what you are saying.
B: I don’t know what you are talking about.
A: You don’t know what you are saying.



Chatbots: Pros and Cons
• Pro:

• Fun
• Good for narrow, scriptable applications

• Cons:
• They don't really understand
• Rule-based chatbots are expensive and brittle
• IR-based chatbots can only mirror training data

• The case of Microsoft Tay
• (or, Garbage-in, Garbage-out)
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Conversational Agents

• Chitchat (Chatbots)

• Task-based Dialog Agents



Task-based dialogue agents
• Sometimes called “frame-based dialogue agents”
• Systems that have the goal of helping a user solve 

a task like making a travel reservation or buying a 
product

•Architecture: based on a “domain ontology”
• A knowledge structure representing user intentions
• One or more frames

• Each a collection of slots having values



The Frame
• Frame represents user intent
• A set of slots, to be filled with information of a given type
• Slots are what system needs to ‘know’ to generate an answer
• Each associated with a question to the user

Slot Type Question
ORIGIN city "What city are you leaving from?
DEST city "Where are you going?
DEP DATE date "What day would you like to leave?
DEP TIME time "What time would you like to leave?
AIRLINE line "What is your preferred airline?



Two basic architectures
• The GUS architecture (Genial Understander System)
• 45 years old, but still used in most industrial task-based dialogue 

agents
• Bobrow, Daniel G., Ronald M. Kaplan, Martin Kay, Donald A. Norman, Henry Thompson, 

and Terry Winograd. 1977. "GUS, a frame-driven dialog system." Artificial Intelligence 8, 
2:155-173.

•The dialogue-state architecture
• Extension of GUS
• More common in academics
• Still not widely used industrially
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values. Together this set of frames is sometimes called a domain ontology.

GUS: Hello. My name is GUS. I can help you plan a simple trip by air. Where do you
want to go ?

Client: I want to go to San Diego on May 28
GUS: What time do you want to leave?
Client: I must be in San Diego before 10 am
GUS: Would you like P.S.A. flight 102 that arrives at 9.15 am ?
Client: What is the next flight ?
GUS: Air California flight 310 that leaves at 8.30am and arrives at 10.00am
Client: I’ll take the first one
GUS: In what name should I make a reservation, please?
Client: Dan Bobrow
GUS: I have confirmed the following flight: P.S.A. flight 102 on Wednesday May 28

from San Jose to San Diego that leaves at 7.30 am and arrives at 9.15 am.
GUS: What date do you want to return on ?
Client: On Friday in the evening.
GUS: Would you like the flight that leaves at 7.45 pm ?
Client: That’s fine.
GUS: I have confirmed the following flight: P.S.A. flight 307 on Friday May 30 from

San Diego to San Jose that leaves at 7.45 pm and arrives at 9.30 pm Thank you
for calling. Goodbye

Figure 24.9 The travel domain: A transcript of an actual dialogue with the GUS system of
Bobrow et al. (1977). P.S.A. and Air California were airlines of that period.

The set of slots in a task-based dialogue frame specifies what the system needs
to know, and the filler of each slot is constrained to values of a particular semantic
type. In the travel domain, for example, a slot might be of type city (hence take on
values like San Francisco, or Hong Kong) or of type date, airline, or time.

Slot Type Question Template
ORIGIN CITY city “From what city are you leaving?”
DESTINATION CITY city “Where are you going?”
DEPARTURE TIME time “When would you like to leave?”
DEPARTURE DATE date “What day would you like to leave?”
ARRIVAL TIME time “When do you want to arrive?”
ARRIVAL DATE date “What day would you like to arrive?”
Figure 24.10 A frame in a frame-based dialogue system, showing the type of each slot and
a question used to fill the slot.

Types in GUS, as in modern frame-based dialogue agents, have hierarchical
structure; for example the date type in GUS is itself a frame with slots with types
like integer or members of sets of weekday names:

DATE
MONTH:NAME YEAR:INTEGER DAY:(BOUNDED-INTEGER 1 31)
WEEKDAY:(MEMBER (Sunday Monday Tuesday Wednesday

Thursday Friday Saturday))

24.3.1 Control structure for frame-based dialogue
The control architecture for frame-based dialogue systems, used in various forms
in modern systems like Apple’s Siri, Amazon’s Alexa, and the Google Assistant, is
designed around the frame. The system’s goal is to fill the slots in the frame with the

The state of the art 
in 1977!



Architecture of Dialog Systems
• Understanding

• Dialog Manager

• Task Manager

• Generation



Architecture of Dialog Systems (GUS)
• Understanding

• Identify domain (book a flight, make a restaurant reservation)

• Determine user intent (show a flight)

• Slot filling (extract particular slot)



GUS systems are production rule 
systems (e.g., Siri)
• Different types of inputs cause different productions to 

fire
• Each of which can fill in different frames. 
• The production rules can then switch control based on:
• User’s input 
• Dialogue history (like the last question that the system 

asked)



Rule sets

• Collections of rules consisting of: 
• condition 
• action 

• When user input is processed,  facts added to store and
• rule conditions are evaluated 
• relevant actions executed



Generating responses: template-based 
generation

•A template is a pre-built response string

•Templates can be fixed:
"Hello, how can I help you?"

•Or have variables:
"What time do you want to leave CITY-ORIG?"
"Will you return to CITY-ORIG from CITY-DEST?"



Two basic architectures
• The GUS architecture (Genial Understander System)
• 44 years old, but still used in most industrial task-based dialogue 

agents
• Bobrow, Daniel G., Ronald M. Kaplan, Martin Kay, Donald A. Norman, Henry Thompson, 

and Terry Winograd. 1977. "GUS, a frame-driven dialog system." Artificial Intelligence 8, 
2:155-173.

•The dialogue-state architecture
• Extension of GUS
• More common in academics
• Still not widely used industrially



Dialogue-State or Belief-State 
Architecture
• A more sophisticated version of the frame-based 
architecture

• Basis for modern research systems
• Slowly making its way into industrial systems
• Some aspects (ML for slot-understanding) 

already widely used industrially



Architecture of Dialog Systems
• Understanding

• Dialog Manager

• Task Manager

• Generation



Dialogue-State Architecture
DIALOG STATE TRACKING OVERVIEW

LEAVING FROM DOWNTOWN

LEAVING AT ONE P M

ARRIVING AT ONE P M

0.6

0.2

0.1

{ from: downtown }

{ depart-time: 1300 }

{ arrive-time: 1300 }

0.5

0.3

0.1

from:        CMU
to:          airport
depart-time: 1300
confirmed:   no
score:       0.10

from:        CMU
to:          airport
depart-time: 1300
confirmed:   no
score:       0.15

from:        downtown
to:          airport
depart-time: --
confirmed:   no
score:       0.65

Automatic Speech 
Recognition (ASR)

Spoken Language 
Understanding (SLU)

Dialog State 
Tracker (DST)

Dialog Policy

act:  confirm
from: downtown

FROM DOWNTOWN, 
IS THAT RIGHT?

Natural Language 
Generation (NLG)Text to Speech (TTS)

Figure 1: Principal components of a spoken dialog system.

The topic of this paper is the dialog state tracker (DST). The DST takes as input all of the dialog
history so far, and outputs its estimate of the current dialog state – for example, in a restaurant
information system, the dialog state might indicate the user’s preferred price range and cuisine,
what information they are seeking such as the phone number of a restaurant, and which concepts
have been stated vs. confirmed. Dialog state tracking is difficult because ASR and SLU errors are
common, and can cause the system to misunderstand the user. At the same time, state tracking is
crucial because the dialog policy relies on the estimated dialog state to choose actions – for example,
which restaurants to suggest.

In the literature, numerous methods for dialog state tracking have been proposed. These are
covered in detail in Section 3; illustrative examples include hand-crafted rules (Larsson and Traum,
2000; Bohus and Rudnicky, 2003), heuristic scores (Higashinaka et al., 2003), Bayesian networks
(Paek and Horvitz, 2000; Williams and Young, 2007), and discriminative models (Bohus and Rud-
nicky, 2006). Techniques have been fielded which scale to realistically sized dialog problems and
operate in real time (Young et al., 2010; Thomson and Young, 2010; Williams, 2010; Mehta et al.,
2010). In end-to-end dialog systems, dialog state tracking has been shown to improve overall system
performance (Young et al., 2010; Thomson and Young, 2010).

Despite this progress, direct comparisons between methods have not been possible because past
studies use different domains and different system components for ASR, SLU, dialog policy, etc.
Moreover, there has not been a standard task or methodology for evaluating dialog state tracking.
Together these issues have limited progress in this research area.

The Dialog State Tracking Challenge (DSTC) series has provided a first common testbed and
evaluation suite for dialog state tracking. Three instances of the DSTC have been run over a three

5

Williams et al., 2016
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Dialogue Acts



Components in a dialogue-state architecture
• NLU: extracts slot fillers from the user’s utterance using machine 

learning

• Dialogue state tracker: maintains the current state of the dialogue 
(user’s most recent dialogue act, set of slot-filler constraints the user 

• Dialogue policy: decides what the system should do or say next
• GUS policy: ask questions until the frame was full then report back
• More sophisticated: know when to answer questions, when to ask 

a clarification question, etc.

•NLG: produce more natural, less templated utterances



Natural Language Generation

•NLG  modeled in two stages
• content planning (what to say)
• sentence realization (how to say it) 



Sentence Realization
• Assume content planning has been done by the dialogue 

policy
• Chosen the dialogue act to generate 
• Chosen some attributes (slots and values) that the 

planner wants to say to the user 
• Either to give the user the answer, or as part of a 

confirmation strategy) 



Sentence Realization
• Training data is hard to come by 
• Don't see each restaurant in each situation
•Common way to improve generalization:
• Delexicalization: replacing words in the training set that 

represent slot values with a generic placeholder token:
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recommend(restaurant name= Au Midi, neighborhood = midtown,
cuisine = french

1 Au Midi is in Midtown and serves French food.
2 There is a French restaurant in Midtown called Au Midi.
recommend(restaurant name= Loch Fyne, neighborhood = city
centre, cuisine = seafood)

3 Loch Fyne is in the City Center and serves seafood food.
4 There is a seafood restaurant in the City Centre called Loch Fyne.

Figure 24.16 Two examples of inputs to the sentence realization phase of NLG, showing
the dialogue act and attributes prespecified by the content planner. Line 1-2 and 3-4 show dif-
ferent possible output sentences to be generated by the sentence realizer. From the restaurant
recommendation system of Nayak et al. (2017).

fore it is common in sentence realization to increase the generality of the training
examples by delexicalization. Delexicalization is the process of replacing specificdelexicalization
words in the training set that represent slot values with a generic placeholder to-
ken representing the slot. Fig. 24.17 shows the result of delexicalizing the training
sentences in Fig. 24.16.

recommend(restaurant name= Au Midi, neighborhood = midtown,
cuisine = french

1 restaurant name is in neighborhood and serves cuisine food.
2 There is a cuisine restaurant in neighborhood called restaurant name.

Figure 24.17 Delexicalized sentences that can be used for generating many different relex-
icalized sentences. From the restaurant recommendation system of Nayak et al. (2017).

Mapping from frames to delexicalized sentences is generally done by encoder
decoder models (Wen et al. 2015a, Wen et al. 2015b, Mrkšić et al. 2017, inter
alia), trained on large hand-labeled corpora of task-oriented dialogue (Budzianowski
et al., 2018). The input to the encoder is a sequence of tokens xt that represent
the dialogue act and its arguments. Thus the dialogue act RECOMMEND and the
attribute/value pairs service:decent, cuisine:null might be represented as a flat se-
quence of tokens (Nayak et al., 2017), each mapped to a learned embedding wt , as
shown in Fig. 24.18.

decentservice:RECOMMEND cuisine: null

[name] has decent service

ENCODER

DECODER

Figure 24.18 An encoder decoder sentence realizer mapping slots/fillers to English.

The encoder reads all the input slot/value representations, and the decoder out-
puts the following delexicalized English sentence:

restaurant name has decent service

We can then use the input frame from the content planner to relexicalize (fill in therelexicalize
exact restaurant or neighborhood or cuisine) resulting in:

Au Midi has decent service
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et al., 2018). The input to the encoder is a sequence of tokens xt that represent
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attribute/value pairs service:decent, cuisine:null might be represented as a flat se-
quence of tokens (Nayak et al., 2017), each mapped to a learned embedding wt , as
shown in Fig. 24.18.

decentservice:RECOMMEND cuisine: null
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ENCODER

DECODER

Figure 24.18 An encoder decoder sentence realizer mapping slots/fillers to English.

The encoder reads all the input slot/value representations, and the decoder out-
puts the following delexicalized English sentence:

restaurant name has decent service

We can then use the input frame from the content planner to relexicalize (fill in therelexicalize
exact restaurant or neighborhood or cuisine) resulting in:

Au Midi has decent service

Sentence Realization: mapping from 
frames to delexicalized sentences

• Encoder-decoder models:

• Output:
restaurant_name has decent service

• Relexicalize to: 
• Au Midi has decent service 



Beyond Pipeline

• End-to-end dialog generation
• Generate the entire sequence



Chatbots and Dialogue Systems

Evaluation



Chatbots are evaluated by humans

• Automatic evaluations (BLEU/ROUGE, dot products) correlate 
poorly with human judgements

• Participant evaluation: The human who talked to the 
chatbot assigns a score

• Observer evaluation: third party who reads a transcript 
of a human/chatbot conversation assigns a score



Participant evaluation of See et al. (2019)
• Human chats with model for 6 turns and rates 8 dimensions of 

quality:
• avoiding repetition, interestingness, making sense, fluency, 

listening, inquisitiveness, humanness, engagingness, 
•e.g.:
• (1) Avoiding Repetition: How repetitive was this user? 

• •Repeated themselves over and over •Sometimes said the same thing twice • 
Always said something new 

• (3) Making sense: How often did this user say something which didn't make 
sense? 

• •Never made any sense •Most responses didn’t make sense •Some responses 
didn’t make sense •Everything made perfect sense 

• (8) Engagingness: How much did you enjoy talking to this user?
• •Not at all •A little •Somewhat •A lot



Observer evaluation: acute-eval
• Annotators look at two conversations (A + B) and decide which 

one is better:
• Engagingness: Who would you prefer to talk to for a long 

conversation? 
• Interestingness: If you had to say one of these speakers is 

interesting and one is boring, who would you say is more 
interesting? 

• Humanness: Which speaker sounds more human? 
• Knowledgeable: If you had to say that one speaker is more 

knowledgeable and one is more ignorant, who is more 
knowledgeable?

Li et al. 2019



Task-based Dialog system evaluation

1. Slot Error Rate for a Sentence
# of inserted/deleted/substituted slots
# of total reference slots for sentence

2. End-to-end evaluation (Task Success)



Evaluation Metrics: Slot error rate

Slot error rate: 1/3
Task success: At end, was the correct meeting added to the calendar?

“Make an appointment with Chris at 10:30 in Gates 104”

Slot Filler
PERSON Chris
TIME 11:30 a.m.
ROOM Gates 104



More fine-grained metrics: User 
Satisfaction Survey
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the Turing test. The idea is to train a “Turing-like” evaluator classifier to distinguish
between human-generated responses and machine-generated responses. The more
successful a response generation system is at fooling this evaluator, the better the
system.

24.5.2 Evaluating Task-Based Dialogue
For task-based dialogue, if the task is unambiguous, we can simply measure absolute
task success (did the system book the right plane flight, or put the right event on the
calendar).

To get a more fine-grained idea of user happiness, we can compute a user sat-
isfaction rating, having users interact with a dialogue system to perform a task and
then having them complete a questionnaire. For example, Fig. 24.20 shows sample
multiple-choice questions (Walker et al., 2001); responses are mapped into the range
of 1 to 5, and then averaged over all questions to get a total user satisfaction rating.

TTS Performance Was the system easy to understand ?
ASR Performance Did the system understand what you said?
Task Ease Was it easy to find the message/flight/train you wanted?
Interaction Pace Was the pace of interaction with the system appropriate?
User Expertise Did you know what you could say at each point?
System Response How often was the system sluggish and slow to reply to you?
Expected Behavior Did the system work the way you expected it to?
Future Use Do you think you’d use the system in the future?

Figure 24.20 User satisfaction survey, adapted from Walker et al. (2001).

It is often economically infeasible to run complete user satisfaction studies after
every change in a system. For this reason, it is useful to have performance evaluation
heuristics that correlate well with human satisfaction. A number of such factors and
heuristics have been studied, often grouped into two kinds of criteria: how well the
system allows users to accomplish their goals (maximizing task success) with the
fewest problems (minimizing costs):

Task completion success: Task success can be measured by evaluating the cor-
rectness of the total solution. For a frame-based architecture, this might be slot
error rate, the percentage of slots that were filled with the correct values:

Slot Error Rate for a Sentence =
# of inserted/deleted/subsituted slots
# of total reference slots for sentence

(24.9)

For example consider a system given this sentence:
(24.10) Make an appointment with Chris at 10:30 in Gates 104
which extracted the following candidate slot structure:

Slot Filler
PERSON Chris
TIME 11:30 a.m.
ROOM Gates 104

Here the slot error rate is 1/3, since the TIME is wrong. Instead of error rate,
slot precision, recall, and F-score can also be used. Slot error rate is also sometimes
called concept error rate.

Interestingly, sometimes the user’s perception of whether they completed the
task is a better predictor of user satisfaction than the actual task completion success.
(Walker et al., 2001).

Walker et al., 2001



Other Heuristics
• Efficiency cost: 
• total elapsed time for the dialogue in seconds, 
• the number of total turns or of system turns
• total number of queries 
• “turn correction ratio”: % of turns that were used to correct errors
• Quality cost: 
• number of ASR rejection prompts. 
• number of times the user had to barge in



Challenges
• Response generation

• Task-oriented



Challenges

• Understand dialog context 

• Track belief state over dialog context

• Interpret structured database output

• Follow task-specific dialog policy 

• Generate natural language responses 



Datasets



Classical Method: Pipeline



Neural Methods: Seq2seq with Attention
Budzianowski et al. 2018 



Structured Fusion Network
Mehri et al 2019



Neural Methods: Pretrained Models
Peng et al 2020



Challenges
• Response generation

• Open-domain systems must engage in chit-chat with a user 



Challenges

• Understand dialog context 

• Discuss a variety of topics

• Generate natural language responses

• Generate engaging responses

• Demonstrate commonsense reasoning



Seq2seq
Vinyals and Le 2015



Diversity Promotion: Explicit Objective

Dull response Problem: solved by
Li et al. (2016)  via the objective:

1. Max MI instead of min cross-entropy
2. Anti-LM objective by penalizing
Responses with high likelihood



Diversity Promotion [Li et al. 2016]



Persona-Conditioned Models [Zhang et al. 2018]

Condition dialogs on persona to make models more engaging



Transfer-Transfo [Wolf et al. 2019]



DialoGPT [Zhang et al. 2019]

•Continue pre-training GPT-2 on conversations from Reddit 

• Filter long utterances, non-English utterances 
• Filter URLs, toxic comments

• Train on 147M dialog instances (1.8B words)

• “Human-level” response generation ability 



Meena [Adiwardana et al. 2020]



Meena [Adiwardana et al. 2020]



Summary
• Unique challenges in dialog research

• Tasks and datasets 

• Common models


