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Logistics

• Presentation slots

• Lecture videos posted on class channel on Mediaspace

• Assignment 1 out
• due 2/11
• post issues on Piazza 
• submit on Gradescope
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From Words to Word Sequences

• Words as units of text
• Word level models for text classification

• Relations between words
• Word meaning and similarity
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Words to Word-Sequences
NLP rich in sequences
• Characters to words
• Words to sentences
• Sentences to documents

• Two models of words as sequences
• Language modeling
• Tagging
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Words to Word Sequences

• Language modeling

• Tagging
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Which of These are Valid?
• Iryna went to the museum.

• museum Iryna to the went.

• Iryna went museum.

• The museum went Iryna.

• The mobile museum went to Iryna. 



7

Language Modeling

• Probability of a sentence (sequence of words)

• p(w1, w2, . . . , wM ), with wm ∈ V (vocabulary)

• Why is probability of a sentence useful?
• Machine translation

他向记者介绍了发⾔的主要内容
– He briefed to reporters on the chief contents of the statement 
– He briefed reporters on the chief contents of the statement
– He briefed to reporters on the main contents of the statement 
– He briefed reporters on the main contents of the statement 
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Language Modeling

• Probability of a sentence (sequence of words)

• p(w1, w2, . . . , wM ), with wm ∈ V (vocabulary)

• Why is probability of a sentence useful?
• Machine translation
• Speech recognition
• Summarization
• Dialog generation



9

Language Modeling

• Everyday use of LM
• Given a part of sentence, predict next word
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Language Modeling
• Probability of a sentence 

• Measure of fluency of sentence

• El café negro me gusta mucho.

{the coffee black me pleases much, I love black coffee}
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N-Gram Language Modeling
• Classical models for LM

• Definition: n-gram is a chunk of n consecutive 
words

• Unigram, bigram, trigram

• Core idea: 
• Gather statistics on n-grams from a corpus
• Use to predict next word/probability of sentence
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N-Gram Language Modeling

• Classical models for LM
• n-gram language models

• Distribution of next word is a multinomial conditioned 
on previous n-1 words 

P(W) = P(w1,….wn) = P(w1) . ∏!"#
$ P(wi | w1, …w i − 1 )

• Simplifying assumption: k-th order Markov assumption
K-gram model condition on k-1 words

P(wn | w1, …wn-1) ≈ P(wn | wn-k+1 …wn-1 ) 
• trigram model P(w1,….wn) = P(w1) . P(w2|w1) . P(w3|w1, w2) …
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Estimating Probabilities
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How to Learn a LM?
P(W) = P(w1,….wn) = P(w1) . ∏!"#

$ P(wi | wi−k+1 …wi−1 )

• Conditional probabilities

• Obtained by MLE (counting)

• I visited San _____  
• put a distribution on next word using trigram language 

model learned from large corpus
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How to Learn a LM?

• Pad a <begin> and <end> symbol

• Count to obtain MLE of probabilities

• P(I like black coffee) = P( I| <begin>)…P(coffee|black).
P(<end>| coffee)
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Problems with N-gram LM?

• Throwing away too much context, impacts the word 
we predict

• 4-gram LM
When the lunch bell rang, the students opened their _______

• When the lunch bell rang, the students opened their _______
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Problems with N-gram LM?
• Sparsity issues

P(w|students opened their) = %&'()(+)',-()+ &.-(-, )/-01 2)
%&'()(+)',-()+ &.-(-, )/-01)

• For some w, the count of numerator is zero
solution: smoothing, have small probability for every w
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Smoothing
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Problems with N-gram LM?
• Sparsity issues
P(w|students opened their) = %&'()(+)',-()+ &.-(-, )/-01 2)

%&'()(+)',-()+ &.-(-, )/-01)

• Sparsity in terms of count of denominator
• Solution: Back off

• Worsens for large n, so n <=5 typically

• Number of parameters grows with n



Google N-Gram Release, August 2006

…
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What else can you use LMs for?

• Generate text

• <start> I love ____

• <start> I love to ____ 



Evaluating LM
• Extrinsic: check whether the language model improves a task

• Intrinsic: Best LM is one that best predicts an unseen test set
• Gives the highest P(sentence) 



Evaluating LM

Perplexity: inverse probability of the test set, normalized by the number 
of words

Minimizing perplexity == maximizing probability

• Extrinsic: check whether the language model improves a task

• Intrinsic: held-out likelihood on tests     



Perplexity Pros and Cons
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Problems and Solutions
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Alternative: Featurized Linear Models
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Example
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Problems and Solutions
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Linear Models Can’t Learn Feature Combinations
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Neural Networks
• Complex models for NLP

• Text classification
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Text Classification
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Text Classification
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Neural Networks for Text Classification
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Neural Networks for Text Classification
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Neural Networks for Text Classification
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Neural Networks for Text Classification
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Neural Language Models
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Neural Language Models= Shared Strength
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Problems and Solutions
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Long Range Dependencies
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Long Range Dependencies
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Recurrent Neural Networks (Elman 1990) 
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Recurrent Neural Networks (Elman 1990) 



44

RNN Training
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RNN Advantage
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Represent Sentences



47

Represent Sentences
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RNN Advantage
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Represent Contexts
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Represent Contexts: Language Modeling
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Bidirectional RNNs


