
ECE594: Mathematical
Models of Language

Spring 2022
Lecture 4: Models of Meaning

2

Logistics

• Project proposals due February 18

• Read resources and related papers, discuss initial ideas

• Readings related to lecture---Yay or Nay

• Assignments posted this week

Project Proposal
1. Find a relevant (key) research paper for your topic

2. Write a summary of that research paper and what you took away
from it as key ideas that you hope to use

3. Write what you plan to work on and how you can innovate in your
final project work

4. Describe as needed
• A project plan, relevant existing literature, the kind(s) of models you

will use/explore; the data you will use (and how it is obtained), and
how you will evaluate success

4

From Words to Word Meaning

• Words as units of text
• BoW prominent assumption
• Feature extraction for classification
• Alternatives to explicit feature extraction sought

• Word representation
• Numerical representation for words

• Embed words in a vector space
• Permit comparing words

Words as vectors

• Sentiment analysis:
• Feature is a word identity

• Feature 5: 'The previous word was "terrible"'
• requires exact word to be in training and test

• With embeddings:
• Feature is a word vector
• Previous word was vector [35,22,17…]
• In the test set we might see a similar vector [34,21,14…]
• Generalize with similar but unseen words

6

Word-Level Models of Meaning

• Language described from 3 perspectives
• Relations between words
• Compositionality of how words are formed
• Distributional properties of word co-occurrence

7

Word Meaning to Sentence Meaning

8

Word-Level Models of Meaning

• Language described from 3 perspectives
• Relations between words
• Compositionality of how words are formed
• Distributional properties of word co-occurrence

Distributional Hypothesis

Distributional hypothesis, stated by linguist John R. Firth (1957) as:
“You shall know a word by the company it keeps.”
≈ “words that occur in similar contexts have similar meanings”

• One way to define "usage":
words are defined by their environments (the words around them)

• Zellig Harris (1954):
• If A and B have almost identical environments we say that they are

synonyms.

Idea 1: Defining meaning by linguistic distribution

• Let's define the meaning of a word by its distribution in
language use, meaning its neighboring words or grammatical
environments.

• Distributional representation of words

Context counting
(C1) A bottle of _______is on the table
(C2) People like _______.
(C3) Don’t have ______ before you drive.
(C4) _______ is made out of corn

C1 C2 C3 C4

tesgüino 1 1 1 1
loud 0 0 0 0
Motor oil 1 0 0 1
tortillas 0 1 0 1
choices 0 1 0 0
wine 1 1 1 1

Idea 2: Meaning as a point in space (Osgood et
al. 1957)

• 3 affective dimensions for a word
• valence: pleasantness
• arousal: intensity of emotion
• dominance: the degree of control exerted

•
• Hence the connotation of a word is a vector in 3-space

Word Score Word Score
Valence love 1.000 toxic 0.008

happy 1.000 nightmare 0.005
Arousal elated 0.960 mellow 0.069

frenzy 0.965 napping 0.046
Dominance powerful 0.991 weak 0.045

leadership 0.983 empty 0.081

NRC VAD Lexicon
(Mohammad 2018)

We'll discuss 2 kinds of embeddings

• Distributional

• Distributed

Distributional Embeddings
• Context counting

• Words are represented by counts of nearby words (left and
right context window)

• Weighted by PPMI (positive pointwise mutual information)

• Intuition: weigh the association between two words by asking
how much more the two words co-occur in our corpus than
we would have a priori expected them to appear by chance

Pointwise Mutual Information

Do outcomes x and y co-occur more than if they were
independent?

PMI between two words: (Church & Hanks 1989)
Do words x and y co-occur more than if they were

independent?

PMI 𝑤𝑜𝑟𝑑!, 𝑤𝑜𝑟𝑑" = log"
𝑃(𝑤𝑜𝑟𝑑!, 𝑤𝑜𝑟𝑑")
𝑃 𝑤𝑜𝑟𝑑! 𝑃(𝑤𝑜𝑟𝑑")

PMI(X,Y) = log2
P(x,y)
P(x)P(y)

Positive Pointwise Mutual Information
• PMI ranges from −∞ to +∞
• But negative values are problematic

• Things are co-occurring less than we expect by chance
• Unreliable without enormous corpora

• Imagine w1 and w2 whose probability is each 10-6
• Hard to be sure p(w1,w2) is significantly different than 10-12

• Positive PMI (PPMI) between word1 and word2:
PPMI 𝑤𝑜𝑟𝑑!, 𝑤𝑜𝑟𝑑" = max log"

𝑃(𝑤𝑜𝑟𝑑!, 𝑤𝑜𝑟𝑑")
𝑃 𝑤𝑜𝑟𝑑! 𝑃(𝑤𝑜𝑟𝑑")

, 0

Distributional Embeddings
• Context counting

• Words are represented by counts of nearby words (left and
right context window)

• Weighted by PPMI (positive pointwise mutual information)

• Sparse vectors, dimensionality |V|

Computing PPMI on a term-context matrix
• Matrix F with W rows (words) and C columns (contexts)
• fij is # of times wi occurs in context cj

18

6.6 • POINTWISE MUTUAL INFORMATION (PMI) 15

context c j. This can be turned into a PPMI matrix where ppmii j gives the PPMI
value of word wi with context c j as follows:

pi j =
fi jPW

i=1
PC

j=1 fi j
pi⇤ =

PC
j=1 fi jPW

i=1
PC

j=1 fi j
p⇤ j =

PW
i=1 fi jPW

i=1
PC

j=1 fi j
(6.19)

PPMIi j = max(log2
pi j

pi⇤p⇤ j
,0) (6.20)

Let’s see some PPMI calculations. We’ll use Fig. 6.10, which repeats Fig. 6.6 plus
all the count marginals, and let’s pretend for ease of calculation that these are the
only words/contexts that matter.

computer data result pie sugar count(w)
cherry 2 8 9 442 25 486

strawberry 0 0 1 60 19 80
digital 1670 1683 85 5 4 3447

information 3325 3982 378 5 13 7703

count(context) 4997 5673 473 512 61 11716
Figure 6.10 Co-occurrence counts for four words in 5 contexts in the Wikipedia corpus,
together with the marginals, pretending for the purpose of this calculation that no other
words/contexts matter.

Thus for example we could compute PPMI(w=information,c=data), assuming
we pretended that Fig. 6.6 encompassed all the relevant word contexts/dimensions,
as follows:

P(w=information,c=data) =
3982
11716

= .3399

P(w=information) =
7703
11716

= .6575

P(c=data) =
5673
11716

= .4842

ppmi(information,data) = log2(.3399/(.6575⇤ .4842)) = .0944

Fig. 6.11 shows the joint probabilities computed from the counts in Fig. 6.10, and
Fig. 6.12 shows the PPMI values. Not surprisingly, cherry and strawberry are highly
associated with both pie and sugar, and data is mildly associated with information.

p(w,context) p(w)
computer data result pie sugar p(w)

cherry 0.0002 0.0007 0.0008 0.0377 0.0021 0.0415
strawberry 0.0000 0.0000 0.0001 0.0051 0.0016 0.0068

digital 0.1425 0.1436 0.0073 0.0004 0.0003 0.2942
information 0.2838 0.3399 0.0323 0.0004 0.0011 0.6575

p(context) 0.4265 0.4842 0.0404 0.0437 0.0052
Figure 6.11 Replacing the counts in Fig. 6.6 with joint probabilities, showing the marginals
around the outside.

PMI has the problem of being biased toward infrequent events; very rare words
tend to have very high PMI values. One way to reduce this bias toward low frequency

pij =
fij

fij
j=1

C

∑
i=1

W

∑
pi* =

fij
j=1

C

∑

fij
j=1

C

∑
i=1

W

∑
p* j =

fij
i=1

W

∑

fij
j=1

C

∑
i=1

W

∑

pmiij = log2
pij

pi*p* j
ppmiij =

pmiij if pmiij > 0

0 otherwise

!
"
#

$#

•p(w=information,c=data) =
•p(w=information) =
•p(c=data) =

19

= .33993982/111716

7703/11716 = .6575
5673/11716 = .4842

pij =
fij

fij
j=1

C

∑
i=1

W

∑

p(wi) =
fij

j=1

C

∑

N
p(cj) =

fij
i=1

W

∑

N

6.6 • POINTWISE MUTUAL INFORMATION (PMI) 15

context c j. This can be turned into a PPMI matrix where ppmii j gives the PPMI
value of word wi with context c j as follows:

pi j =
fi jPW

i=1
PC

j=1 fi j
pi⇤ =

PC
j=1 fi jPW

i=1
PC

j=1 fi j
p⇤ j =

PW
i=1 fi jPW

i=1
PC

j=1 fi j
(6.19)

PPMIi j = max(log2
pi j

pi⇤p⇤ j
,0) (6.20)

Let’s see some PPMI calculations. We’ll use Fig. 6.10, which repeats Fig. 6.6 plus
all the count marginals, and let’s pretend for ease of calculation that these are the
only words/contexts that matter.

computer data result pie sugar count(w)
cherry 2 8 9 442 25 486

strawberry 0 0 1 60 19 80
digital 1670 1683 85 5 4 3447

information 3325 3982 378 5 13 7703

count(context) 4997 5673 473 512 61 11716
Figure 6.10 Co-occurrence counts for four words in 5 contexts in the Wikipedia corpus,
together with the marginals, pretending for the purpose of this calculation that no other
words/contexts matter.

Thus for example we could compute PPMI(w=information,c=data), assuming
we pretended that Fig. 6.6 encompassed all the relevant word contexts/dimensions,
as follows:

P(w=information,c=data) =
3982
11716

= .3399

P(w=information) =
7703
11716

= .6575

P(c=data) =
5673
11716

= .4842

ppmi(information,data) = log2(.3399/(.6575⇤ .4842)) = .0944

Fig. 6.11 shows the joint probabilities computed from the counts in Fig. 6.10, and
Fig. 6.12 shows the PPMI values. Not surprisingly, cherry and strawberry are highly
associated with both pie and sugar, and data is mildly associated with information.

p(w,context) p(w)
computer data result pie sugar p(w)

cherry 0.0002 0.0007 0.0008 0.0377 0.0021 0.0415
strawberry 0.0000 0.0000 0.0001 0.0051 0.0016 0.0068

digital 0.1425 0.1436 0.0073 0.0004 0.0003 0.2942
information 0.2838 0.3399 0.0323 0.0004 0.0011 0.6575

p(context) 0.4265 0.4842 0.0404 0.0437 0.0052
Figure 6.11 Replacing the counts in Fig. 6.6 with joint probabilities, showing the marginals
around the outside.

PMI has the problem of being biased toward infrequent events; very rare words
tend to have very high PMI values. One way to reduce this bias toward low frequency

6.6 • POINTWISE MUTUAL INFORMATION (PMI) 15

context c j. This can be turned into a PPMI matrix where ppmii j gives the PPMI
value of word wi with context c j as follows:

pi j =
fi jPW

i=1
PC

j=1 fi j
pi⇤ =

PC
j=1 fi jPW

i=1
PC

j=1 fi j
p⇤ j =

PW
i=1 fi jPW

i=1
PC

j=1 fi j
(6.19)

PPMIi j = max(log2
pi j

pi⇤p⇤ j
,0) (6.20)

Let’s see some PPMI calculations. We’ll use Fig. 6.10, which repeats Fig. 6.6 plus
all the count marginals, and let’s pretend for ease of calculation that these are the
only words/contexts that matter.

computer data result pie sugar count(w)
cherry 2 8 9 442 25 486

strawberry 0 0 1 60 19 80
digital 1670 1683 85 5 4 3447

information 3325 3982 378 5 13 7703

count(context) 4997 5673 473 512 61 11716
Figure 6.10 Co-occurrence counts for four words in 5 contexts in the Wikipedia corpus,
together with the marginals, pretending for the purpose of this calculation that no other
words/contexts matter.

Thus for example we could compute PPMI(w=information,c=data), assuming
we pretended that Fig. 6.6 encompassed all the relevant word contexts/dimensions,
as follows:

P(w=information,c=data) =
3982
11716

= .3399

P(w=information) =
7703
11716

= .6575

P(c=data) =
5673
11716

= .4842

ppmi(information,data) = log2(.3399/(.6575⇤ .4842)) = .0944

Fig. 6.11 shows the joint probabilities computed from the counts in Fig. 6.10, and
Fig. 6.12 shows the PPMI values. Not surprisingly, cherry and strawberry are highly
associated with both pie and sugar, and data is mildly associated with information.

p(w,context) p(w)
computer data result pie sugar p(w)

cherry 0.0002 0.0007 0.0008 0.0377 0.0021 0.0415
strawberry 0.0000 0.0000 0.0001 0.0051 0.0016 0.0068

digital 0.1425 0.1436 0.0073 0.0004 0.0003 0.2942
information 0.2838 0.3399 0.0323 0.0004 0.0011 0.6575

p(context) 0.4265 0.4842 0.0404 0.0437 0.0052
Figure 6.11 Replacing the counts in Fig. 6.6 with joint probabilities, showing the marginals
around the outside.

PMI has the problem of being biased toward infrequent events; very rare words
tend to have very high PMI values. One way to reduce this bias toward low frequency

20

pmiij = log2
pij

pi*p* j

• pmi(information,data) =
log2 (

.3399 / (.6575*.4842)) = .0944

6.6 • POINTWISE MUTUAL INFORMATION (PMI) 15

context c j. This can be turned into a PPMI matrix where ppmii j gives the PPMI
value of word wi with context c j as follows:

pi j =
fi jPW

i=1
PC

j=1 fi j
pi⇤ =

PC
j=1 fi jPW

i=1
PC

j=1 fi j
p⇤ j =

PW
i=1 fi jPW

i=1
PC

j=1 fi j
(6.19)

PPMIi j = max(log2
pi j

pi⇤p⇤ j
,0) (6.20)

Let’s see some PPMI calculations. We’ll use Fig. 6.10, which repeats Fig. 6.6 plus
all the count marginals, and let’s pretend for ease of calculation that these are the
only words/contexts that matter.

computer data result pie sugar count(w)
cherry 2 8 9 442 25 486

strawberry 0 0 1 60 19 80
digital 1670 1683 85 5 4 3447

information 3325 3982 378 5 13 7703

count(context) 4997 5673 473 512 61 11716
Figure 6.10 Co-occurrence counts for four words in 5 contexts in the Wikipedia corpus,
together with the marginals, pretending for the purpose of this calculation that no other
words/contexts matter.

Thus for example we could compute PPMI(w=information,c=data), assuming
we pretended that Fig. 6.6 encompassed all the relevant word contexts/dimensions,
as follows:

P(w=information,c=data) =
3982
11716

= .3399

P(w=information) =
7703
11716

= .6575

P(c=data) =
5673
11716

= .4842

ppmi(information,data) = log2(.3399/(.6575⇤ .4842)) = .0944

Fig. 6.11 shows the joint probabilities computed from the counts in Fig. 6.10, and
Fig. 6.12 shows the PPMI values. Not surprisingly, cherry and strawberry are highly
associated with both pie and sugar, and data is mildly associated with information.

p(w,context) p(w)
computer data result pie sugar p(w)

cherry 0.0002 0.0007 0.0008 0.0377 0.0021 0.0415
strawberry 0.0000 0.0000 0.0001 0.0051 0.0016 0.0068

digital 0.1425 0.1436 0.0073 0.0004 0.0003 0.2942
information 0.2838 0.3399 0.0323 0.0004 0.0011 0.6575

p(context) 0.4265 0.4842 0.0404 0.0437 0.0052
Figure 6.11 Replacing the counts in Fig. 6.6 with joint probabilities, showing the marginals
around the outside.

PMI has the problem of being biased toward infrequent events; very rare words
tend to have very high PMI values. One way to reduce this bias toward low frequency

16 CHAPTER 6 • VECTOR SEMANTICS AND EMBEDDINGS

computer data result pie sugar
cherry 0 0 0 4.38 3.30

strawberry 0 0 0 4.10 5.51
digital 0.18 0.01 0 0 0

information 0.02 0.09 0.28 0 0
Figure 6.12 The PPMI matrix showing the association between words and context words,
computed from the counts in Fig. 6.11. Note that most of the 0 PPMI values are ones that had
a negative PMI; for example PMI(cherry,computer) = -6.7, meaning that cherry and computer
co-occur on Wikipedia less often than we would expect by chance, and with PPMI we replace
negative values by zero.

events is to slightly change the computation for P(c), using a different function Pa(c)
that raises the probability of the context word to the power of a:

PPMIa(w,c) = max(log2
P(w,c)

P(w)Pa(c)
,0) (6.21)

Pa(c) =
count(c)a

P
c count(c)a (6.22)

Levy et al. (2015) found that a setting of a = 0.75 improved performance of
embeddings on a wide range of tasks (drawing on a similar weighting used for skip-
grams described below in Eq. 6.32). This works because raising the count to a =
0.75 increases the probability assigned to rare contexts, and hence lowers their PMI
(Pa(c)> P(c) when c is rare).

Another possible solution is Laplace smoothing: Before computing PMI, a small
constant k (values of 0.1-3 are common) is added to each of the counts, shrinking
(discounting) all the non-zero values. The larger the k, the more the non-zero counts
are discounted.

6.7 Applications of the tf-idf or PPMI vector models

In summary, the vector semantics model we’ve described so far represents a target
word as a vector with dimensions corresponding either to to the documents in a large
collection (the term-document matrix) or to the counts of words in some neighboring
window (the term-term matrix). The values in each dimension are counts, weighted
by tf-idf (for term-document matrices) or PPMI (for term-term matrices), and the
vectors are sparse (since most values are zero).

The model computes the similarity between two words x and y by taking the
cosine of their tf-idf or PPMI vectors; high cosine, high similarity. This entire model
is sometimes referred to as the tf-idf model or the PPMI model, after the weighting
function.

The tf-idf model of meaning is often used for document functions like deciding
if two documents are similar. We represent a document by taking the vectors of
all the words in the document, and computing the centroid of all those vectors.centroid
The centroid is the multidimensional version of the mean; the centroid of a set of
vectors is a single vector that has the minimum sum of squared distances to each of
the vectors in the set. Given k word vectors w1,w2, ...,wk, the centroid document
vector d is:document

vector

d =
w1 +w2 + ...+wk

k
(6.23)

Resulting PPMI matrix (negatives replaced by 0)

Weighting PMI

• PMI is biased toward infrequent events
• Very rare words have very high PMI values

• Two solutions:
• Give rare words slightly higher probabilities
• Use add-one smoothing (which has a similar effect)

21

22

Traditional Approach

• Context counting
• Count left and right context in a window
• Reweight with Pointwise Mutual Information
• Reduce dimensionality with SVD or NNMF

• Why?
• Latent Semantic Analysis of documents [Deerwester et al.

1988]

23

Spare to Dense Vectors

24

Traditional Approach

• Context counting

Other methods include Brown clustering
hierarchical clustering based on bigram mutual

information

Word Embeddings
• Context counting
• Prediction-based

• Vector space representations learned on unlabeled linear
context (i.e., left/right words)

• Dense vectors

Distributed Embeddings
• Context counting
• Prediction-based

• Vector space representations learned on unlabeled linear
context (i.e., left/right words)

• Representation created by training a classifier to predict
whether a word is likely to appear nearby

• Breakthrough idea word2vec [Mikolov et al 2013]
• Continuous Bag of Words idea (using context words to predict

target)
• Skip-gram (predict surrounding context words given current word)
• Demo: https://code.google.com/p/word2vec

Distributed Embeddings
• Context counting
• Prediction-based

• Big idea: self-supervision:
• A word c that occurs near w in the corpus acts as the gold

"correct answer" for supervised learning
• No need for human labels
[Bengio et al. (2003); Collobert et al. (2011)]

Distributed Embeddings

Other Approaches
• Canonical Correlation Analysis

• Multi-sense embeddings
• Task-tailored embeddings to capture specific types of

similarity/semantics

[Faruqui and Dyer 2014]

Evaluation

• Extrinsic method
• Use embeddings for a task and see if performance

improves
• Can be expensive (time) but still most important evaluation

metric

• Analogy: solve problems of the form a:b :: a* :b*, given a,
b, and a*, find b*

Evaluation

• Measure of similarity
• Cosine of angle between vectors --- length ignored
• Vectors are normalized to unit length before they are used

for similarity calculation, making cosine similarity and dot-
product equivalent. [Levy et al., 2015]

• Most applications of word embeddings explore not the
word vectors themselves, but relations between them to
solve, for example, similarity and word relation tasks. For
these tasks, it was found that using normalised word
vectors improves performance. [Wilson and Schakel, 2015]

http://www.aclweb.org/anthology/Q15-1016
http://arxiv.org/abs/1510.02675

Evaluation
• Importance of word length [Schakel and Wilson, 2015]

• A word that is consistently used in a similar context will be represented
by a longer vector than a word of the same frequency that is used in
different contexts.

• Not only the direction, but also the length of word vectors carries
important information.

• Word vector length furnishes, in combination with term frequency, a
useful measure of word significance.

https://arxiv.org/abs/1508.02297

Evaluation
• Instrinsic method

• Fast to compute, but not clear if it really helps downstream
tasks

• Similarity: compute correlation between an algorithm’s word
similarity scores and word similarity ratings assigned by
humans.

• WordSim-353 (Finkelstein et al., 2002) is a commonly used set
of ratings from 0 to 10 for 353 noun pairs

• (plane, car) had an average score of 5.77.

• Analogy: solve problems of the form a:b :: a* :b*, given a, b,
and a*, find b*

Limitation
• Variability

• randomness in the initialization and sampling
• word2vec may produce different results even from the

same dataset, and individual documents in a collection
impact the resulting embeddings [Tian et al. 2016,
Hellrich and Hahn 2016, Antoniak and Mimno 2018]

• Best practice to train multiple embeddings with
bootstrap sampling over documents and average the
results [Antoniak and Mimno, 2018]

36

Sentence Structure for Sentence Meaning

Models of composition
• Initial approaches

• Point-wise sum, tensor product [Mitchell and Lapata, 2010;
Smolensky 1990]

• Worked well for adjective-noun and noun-noun phrases

• Fail to capture structural differences
• Lice on dogs; lice and fleas

• Fails on recursion
• nice toilette-trained spayed short-haired Siamese cat

Models of composition
• Initial approaches

• Matrix-vector compositionality [Baroni and Zamparelli, 2010;
Zanzotto et al., 2010; Grefenstette and Sadrzadeh, 2011;
Socher et al., 2011; Yessenalina and Cardie, 2011]

• content words (such as nouns) are vectors
• functional words (such as determiners) are functions mapping from

expressions of one type onto composite expressions of the same or
other types.

39

Sentence Structure for Sentence Meaning

40

Two Views of Linguistic Structure

• Sentence interpreted via Constituency structure
• Sets of rules of how words are grouped to form

phrases

• Sentence represented as a Dependency structure
• shows which words depend on (modify, attach to, or

are arguments of) which other words

41

Constituency Structure

• A sentence as a set of constituents

• Sentence interpreted via Constituency Grammars
• Sets of rules of how words are grouped to form

phrases
• Context-Free Grammars (CFG)
• Popularized by Noam Chomsky

42

Constituency Parsing
• A sentence as a set of constituents
• Constituency parsing: task of recognizing a sentence

and assigning a constituency structure to it

• NP -> det N
• VP ->V NP
• PP -> prep NN
• VP -> VP PP
• S -> NP VP

43

Constituency Parsing

44

Why Constituency-based structures?
• Typically useful for fixed word-order languages

• Grammar checking : If a sentence can’t be parsed, it may have
grammatical errors (or at least hard to read)

• Intermediate representations
• Syntax-based understanding
• MT (pre-NMT) & Low-resource MT
• Information Extraction

• Several parsers (late1980- early 2000s)
• CKY parser
• Earley parser
• Now NN-based parsers

45

Performance

46

Performance

47

Treebanks
• Corpus of sentences with parse trees

• Penn Treebank

48

Treebanks
• Robust grammars

• Context-free grammar rules

~4500 rules for VP

49

Two Views of Linguistic Structure

• Sentence interpreted via Constituency structure
• Sets of rules of how words are grouped to form

phrases

• Sentence represented as a Dependency structure
• shows which words depend on (modify, attach to, or

are arguments of) which other words

50

Two Views of Structure

51

Dependency Structure

52

Dependency Structure

• Relations between words
• binary, asymmetric
• subject, prepositional object, apposition

• Denoted via arrows with labels
• Arrow connects a head with a dependent

• Dependencies form a connected, acyclic, single-root
graph

53

Dependency Parsing

• Syntactic parsing: task of recognizing a sentence and
assigning a structure to it.

• Dependency parsing: the task of recognizing a sentence and
assigning a dependency structure to it.

54

55

56

57

58

59

60

Dependency Structure
• More popular form

• Universal dependencies defined
• Same annotation standard
• Applicable to wider set of languages, including free

word-order
• Efficient parsing algorithms
• Useful in applications including information extraction

61

Semantic Role Labeling

62

Semantic Roles

63

Use of Semantic Roles

• Infer meaning components even when structurally
dissimilar

64

Semantic Roles

• Defined with respect to the predicates and nouns
• Semantically related verbs/nouns
• Available in manually created resources

• FrameNet and PropBank

65

66

67

Semantic Role Labeling

• POS tagging

• Parsing

• Feature extraction

68

Semantic Role Labeling • POS
tagging

• Parsing

• Feature
extraction

69

Semantic Role Labeling

70

71

72

