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Logistics

• Need feedback providers for Thursday
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Text Classification

• Generative model–naïve Bayes classifier

• Naïve Bayes independence assumption–to learn the joint 
distribution, modeling the probability of the text x 

• In classification problems, always given x, and need to predict 
y. Instead of modeling the probability of the text x, a difficult 
task, what if we focus directly on the problem of predicting y?

• Discriminative learning algorithms have this focus



Text Classification: Definition

• Input:
• a document d
• a fixed set of classes  C = {c1, c2,…, cJ}

• Output: a predicted class c Î C



Supervised Machine Learning

• Input: 
• a document d
• a fixed set of classes  C = {c1, c2,…, cJ}
• A training set of m hand-labeled documents 

(d1,c1),....,(dm,cm), i.i.d
•Output: 

• a learned classifier γ:d à c
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Linear Classification
• Naïve Bayes (Generative classifier)

• Logistic regression (Discriminative classifier)

• Classification decision based on weighted sum of 
individual features 



Discriminative Classifier
Just try to distinguish dogs from cats

Oh look, dogs have collars!
Let's ignore everything else



Discriminative Classifiers

• Logistic Regression
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More formally, recall that the naive Bayes assigns a class c to a document d not
by directly computing P(c|d) but by computing a likelihood and a prior

ĉ = argmax
c2C

likelihoodz }| {
P(d|c)

prior
z}|{
P(c) (5.1)

A generative model like naive Bayes makes use of this likelihood term, whichgenerative
model

expresses how to generate the features of a document if we knew it was of class c.
By contrast a discriminative model in this text categorization scenario attemptsdiscriminative

model
to directly compute P(c|d). Perhaps it will learn to assign high weight to document
features that directly improve its ability to discriminate between possible classes,
even if it couldn’t generate an example of one of the classes.

Components of a probabilistic machine learning classifier: Like naive Bayes,
logistic regression is a probabilistic classifier that makes use of supervised machine
learning. Machine learning classifiers require a training corpus of M observations
input/output pairs (x(i),y(i)). (We’ll use superscripts in parentheses to refer to indi-
vidual instances in the training set—for sentiment classification each instance might
be an individual document to be classified). A machine learning system for classifi-
cation then has four components:

1. A feature representation of the input. For each input observation x(i), this
will be a vector of features [x1,x2, ...,xn]. We will generally refer to feature
i for input x( j) as x( j)

i , sometimes simplified as xi, but we will also see the
notation fi, fi(x), or, for multiclass classification, fi(c,x).

2. A classification function that computes ŷ, the estimated class, via p(y|x). In
the next section we will introduce the sigmoid and softmax tools for classifi-
cation.

3. An objective function for learning, usually involving minimizing error on
training examples. We will introduce the cross-entropy loss function

4. An algorithm for optimizing the objective function. We introduce the stochas-
tic gradient descent algorithm.

Logistic regression has two phases:

training: we train the system (specifically the weights w and b) using stochastic
gradient descent and the cross-entropy loss.

test: Given a test example x we compute p(y|x) and return the higher probability
label y = 1 or y = 0.

5.1 Classification: the sigmoid

The goal of binary logistic regression is to train a classifier that can make a binary
decision about the class of a new input observation. Here we introduce the sigmoid
classifier that will help us make this decision.

Consider a single input observation x, which we will represent by a vector of
features [x1,x2, ...,xn] (we’ll show sample features in the next subsection). The clas-
sifier output y can be 1 (meaning the observation is a member of the class) or 0
(the observation is not a member of the class). We want to know the probability
P(y = 1|x) that this observation is a member of the class. So perhaps the decision

P(c|d)



Logistic Regression 
• Vector of features f(x) = [f1(x), f2(x), ... , fn(x)]
• f1count(positive lexicon words)

f2   = 1 if “no”∈doc
0 otherwise

Weights: one per feature: W = [w1, w2,…, wn] 
• Feature importance

• Z = W · f (x) + b is a scoring function for the compatibility of the base features f and the 
label y. 

• b – bias term to account for the error that is introduced by approximating actual y using a 
simple model

• Output: a predicted class "𝑦 Î {0,1}



Components of a probabilistic machine learning 
classifier

1. A feature representation of the input
• For each input observation x(i), a vector of features [f1(x), f2(x), ... , 

fn(x)]. 

2. A classification function computes !𝑦, the estimated class, via p(y|x)
• sigmoid or softmax functions

3. An objective function for learning that is optimized using the training 
data

• cross-entropy loss

4. An algorithm for optimizing the objective function
• stochastic gradient descent

Given m input/output pairs (x(i),y(i)):



The two phases of logistic regression 

• Training: Learning W and b using to minimize cross-
entropy loss using stochastic gradient descent. 

• Test: Given a test example x we compute p(y=1|x) and 
p(y=0|x) using learned weights w and b, and return the label 
with higher probability



Components of a probabilistic machine learning 
classifier

1. A feature representation of the input
• For each input observation x(i), a vector of features [f1(x), f2(x), ... , 

fn(x)]. 

2. A classification function computes !𝑦, the estimated class, via p(y|x)
• sigmoid or softmax functions

3. An objective function for learning that is optimized using the training 
data

• cross-entropy loss

4. An algorithm for optimizing the objective function
• stochastic gradient descent

Given m input/output pairs (x(i),y(i)):



Sigmoid function

1. Z = W · f (x) + b is a scoring function, z in (-∞,+∞)

2. Need a p(y|x) a probability

3. Use the sigmoid
(aka the logistic) function



Sigmoid function
1. The property that
1−σ(x) = σ(−x) 

permits us to write 

• P(y = 1|x) = σ(z) = !
1+exp(−z)

• P(y = 0|x) = σ (−z) = exp(−z)
1+exp(−z)



Turning a probability into a classifier
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The sigmoid has a number of advantages; it take a real-valued number and maps
it into the range [0,1], which is just what we want for a probability. Because it is
nearly linear around 0 but has a sharp slope toward the ends, it tends to squash outlier
values toward 0 or 1. And it’s differentiable, which as we’ll see in Section 5.8 will
be handy for learning.

We’re almost there. If we apply the sigmoid to the sum of the weighted features,
we get a number between 0 and 1. To make it a probability, we just need to make
sure that the two cases, p(y = 1) and p(y = 0), sum to 1. We can do this as follows:

P(y = 1) = s(w · x+b)

=
1

1+ e�(w·x+b)

P(y = 0) = 1�s(w · x+b)

= 1� 1
1+ e�(w·x+b)

=
e�(w·x+b)

1+ e�(w·x+b) (5.5)

Now we have an algorithm that given an instance x computes the probability
P(y = 1|x). How do we make a decision? For a test instance x, we say yes if the
probability P(y = 1|x) is more than .5, and no otherwise. We call .5 the decision
boundary:decision

boundary

ŷ =
⇢

1 if P(y = 1|x)> 0.5
0 otherwise

5.1.1 Example: sentiment classification
Let’s have an example. Suppose we are doing binary sentiment classification on
movie review text, and we would like to know whether to assign the sentiment class
+ or � to a review document doc. We’ll represent each input observation by the
following 6 features x1...x6 of the input; Fig. 5.2 shows the features in a sample mini
test document.

Var Definition Value in Fig. 5.2
x1 count(positive lexicon) 2 doc) 3
x2 count(negative lexicon) 2 doc) 2

x3

⇢
1 if “no” 2 doc
0 otherwise 1

x4 count(1st and 2nd pronouns 2 doc) 3

x5

⇢
1 if “!” 2 doc
0 otherwise 0

x6 log(word count of doc) ln(64) = 4.15

Let’s assume for the moment that we’ve already learned a real-valued weight
for each of these features, and that the 6 weights corresponding to the 6 features
are [2.5,�5.0,�1.2,0.5,2.0,0.7], while b = 0.1. (We’ll discuss in the next section
how the weights are learned.) The weight w1, for example indicates how important

if w∙x+b > 0
if w∙x+b ≤ 0



From two to multiple classes
Multinomial (softmax) regression,
maxent classification)

• Classes 1, 2…K
• Separate weight vectors wk and bias 
bk for each of the K classes 
• Given an input vector z = [z1,z2,...,zK], softmax
function maps z to a probability distribution



Components of a probabilistic machine learning 
classifier

1. A feature representation of the input
• For each input observation x(i), a vector of features [f1(x), f2(x), ... , 

fn(x)]. 

2. A classification function computes !𝑦, the estimated class, via p(y|x)
• sigmoid or softmax functions

3. An objective function for learning that is optimized using the training 
data

• cross-entropy loss

4. An algorithm for optimizing the objective function
• stochastic gradient descent

Given m input/output pairs (x(i),y(i)):



Learning: Cross-Entropy Loss

• Supervised classification: 
• We know the correct label y (either 0 or 1) for each x. 
• But what the system produces is an estimate, %𝑦
• We want to set w and b to minimize the distance between our 

estimate %𝑦(i) and the true y(i). 
• We need a distance estimator: a loss function or a cost 

function
• We need an optimization algorithm to update w and b to 

minimize the loss.
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Learning components

• A loss function:
• cross-entropy loss

• An optimization algorithm:
• stochastic gradient descent



The distance between !𝑦 and y

• We want to know how far is the classifier output:
!𝑦 = σ(w∙x+b)

from the true output:
y        [= either 0 or 1]

• We'll call this difference:
L( !𝑦 ,y) = how much !𝑦 differs from the true y 



Intuition of negative log likelihood loss
= cross-entropy loss

• A case of conditional maximum likelihood estimation 
• We choose the parameters w,b that maximize the log 

probability of the true y labels in the training data given the 
observations x



Cross-entropy loss for a single observation x

• Goal: maximize probability of the correct label p(y|x) 
We express the probability p(y|x) from our classifier (the thing we 
want to maximize) as

noting:
if y=1, this simplifies to %𝑦
if y=0, this simplifies to 1- %𝑦
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the cross-entropy loss.
The second thing we need is an optimization algorithm for iteratively updating

the weights so as to minimize this loss function. The standard algorithm for this is
gradient descent; we’ll introduce the stochastic gradient descent algorithm in the
following section.

5.3 The cross-entropy loss function

We need a loss function that expresses, for an observation x, how close the classifier
output (ŷ = s(w · x+b)) is to the correct output (y, which is 0 or 1). We’ll call this:

L(ŷ,y) = How much ŷ differs from the true y (5.8)

We do this via a loss function that prefers the correct class labels of the train-
ing examples to be more likely. This is called conditional maximum likelihood
estimation: we choose the parameters w,b that maximize the log probability of
the true y labels in the training data given the observations x. The resulting loss
function is the negative log likelihood loss, generally called the cross-entropy loss.cross-entropy

loss
Let’s derive this loss function, applied to a single observation x. We’d like to

learn weights that maximize the probability of the correct label p(y|x). Since there
are only two discrete outcomes (1 or 0), this is a Bernoulli distribution, and we can
express the probability p(y|x) that our classifier produces for one observation as
the following (keeping in mind that if y=1, Eq. 5.9 simplifies to ŷ; if y=0, Eq. 5.9
simplifies to 1� ŷ):

p(y|x) = ŷ y (1� ŷ)1�y (5.9)

Now we take the log of both sides. This will turn out to be handy mathematically,
and doesn’t hurt us; whatever values maximize a probability will also maximize the
log of the probability:

log p(y|x) = log
⇥
ŷ y (1� ŷ)1�y⇤

= y log ŷ+(1� y) log(1� ŷ) (5.10)

Eq. 5.10 describes a log likelihood that should be maximized. In order to turn this
into loss function (something that we need to minimize), we’ll just flip the sign on
Eq. 5.10. The result is the cross-entropy loss LCE:

LCE(ŷ,y) =� log p(y|x) = � [y log ŷ+(1� y) log(1� ŷ)] (5.11)

Finally, we can plug in the definition of ŷ = s(w · x+b):

LCE(ŷ,y) = � [y logs(w · x+b)+(1� y) log(1�s(w · x+b))] (5.12)

Let’s see if this loss function does the right thing for our example from Fig. 5.2. We
want the loss to be smaller if the model’s estimate is close to correct, and bigger if
the model is confused. So first let’s suppose the correct gold label for the sentiment
example in Fig. 5.2 is positive, i.e., y = 1. In this case our model is doing well, since
from Eq. 5.7 it indeed gave the example a higher probability of being positive (.69)
than negative (.31). If we plug s(w · x+b) = .69 and y = 1 into Eq. 5.12, the right



• Whatever values maximize log p(y|x) will also maximize p(y|x)
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Finally, we can plug in the definition of ŷ = s(w · x+b):
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Goal: maximize probability of the correct label p(y|x) 
Maximize:

Maximize:



Deriving cross-entropy loss for a single observation x

• Now flip sign to turn this into a loss: something to minimize
• Cross-entropy loss (because is formula for cross-entropy(y, %𝑦 ))

• Or, plugging in definition of %𝑦:
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Goal: maximize probability of the correct label p(y|x) 

Maximize:

Minimize:
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p(y|x) = ŷ y (1� ŷ)1�y (5.9)

Now we take the log of both sides. This will turn out to be handy mathematically,
and doesn’t hurt us; whatever values maximize a probability will also maximize the
log of the probability:

log p(y|x) = log
⇥
ŷ y (1� ŷ)1�y⇤
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= y log ŷ+(1� y) log(1� ŷ) (5.10)
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Finally, we can plug in the definition of ŷ = s(w · x+b):

LCE(ŷ,y) = � [y logs(w · x+b)+(1� y) log(1�s(w · x+b))] (5.12)

Let’s see if this loss function does the right thing for our example from Fig. 5.2. We
want the loss to be smaller if the model’s estimate is close to correct, and bigger if
the model is confused. So first let’s suppose the correct gold label for the sentiment
example in Fig. 5.2 is positive, i.e., y = 1. In this case our model is doing well, since
from Eq. 5.7 it indeed gave the example a higher probability of being positive (.69)
than negative (.31). If we plug s(w · x+b) = .69 and y = 1 into Eq. 5.12, the right



Stochastic Gradient Descent
• The loss function is parameterized by weights 𝛳=(w,b)
• We represent %𝑦 as f (x; θ) to make the dependence on θ explicit

• We want the weights that minimize the loss, averaged over all 
examples:
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side of the equation drops out, leading to the following loss (we’ll use log to mean
natural log when the base is not specified):

LCE(ŷ,y) = �[y logs(w · x+b)+(1� y) log(1�s(w · x+b))]
= � [logs(w · x+b)]
= � log(.70)
= .36

By contrast, let’s pretend instead that the example in Fig. 5.2 was actually negative,
i.e., y = 0 (perhaps the reviewer went on to say “But bottom line, the movie is
terrible! I beg you not to see it!”). In this case our model is confused and we’d want
the loss to be higher. Now if we plug y = 0 and 1�s(w · x+b) = .31 from Eq. 5.7
into Eq. 5.12, the left side of the equation drops out:

LCE(ŷ,y) = �[y logs(w · x+b)+(1� y) log(1�s(w · x+b))]
= � [log(1�s(w · x+b))]
= � log(.30)
= 1.2

Sure enough, the loss for the first classifier (.37) is less than the loss for the second
classifier (1.17).

Why does minimizing this negative log probability do what we want? A per-
fect classifier would assign probability 1 to the correct outcome (y=1 or y=0) and
probability 0 to the incorrect outcome. That means the higher ŷ (the closer it is
to 1), the better the classifier; the lower ŷ is (the closer it is to 0), the worse the
classifier. The negative log of this probability is a convenient loss metric since it
goes from 0 (negative log of 1, no loss) to infinity (negative log of 0, infinite loss).
This loss function also ensures that as the probability of the correct answer is max-
imized, the probability of the incorrect answer is minimized; since the two sum to
one, any increase in the probability of the correct answer is coming at the expense
of the incorrect answer. It’s called the cross-entropy loss, because Eq. 5.10 is also
the formula for the cross-entropy between the true probability distribution y and our
estimated distribution ŷ.

Now we know what we want to minimize; in the next section, we’ll see how to
find the minimum.

5.4 Gradient Descent

Our goal with gradient descent is to find the optimal weights: minimize the loss
function we’ve defined for the model. In Eq. 5.13 below, we’ll explicitly represent
the fact that the loss function L is parameterized by the weights, which we’ll refer
to in machine learning in general as q (in the case of logistic regression q = w,b).
So the goal is to find the set of weights which minimizes the loss function, averaged
over all examples:

q̂ = argmin
q

1
m

mX

i=1

LCE( f (x(i);q),y(i)) (5.13)



Our goal: minimize the loss
• For logistic regression, loss function is convex (can you 

prove this?)
• In particular, if an objective function is differentiable, then 

gradient-based optimization can be employed; if it is also 
convex, then gradient-based optimization is guaranteed to 
find the globally optimal solution. 

• Gradient descent starting from any point is guaranteed to 
find the minimum



Let's first visualize for a single scalar w

w

Loss

0
w1 wmin

(goal)

Should we move
 right or left from here?

Q: Given current w, should we make it bigger or smaller?
A: Move w in the reverse direction from the slope of the function 



Let's first visualize for a single scalar w

w

Loss

0
w1 wmin

slope of loss at w1 
is negative

(goal)

So we'll move positive



w

Loss

0
w1 wmin

slope of loss at w1 
is negative

(goal)

one step
of gradient

descent

So we'll move positive

Let's first visualize for a single scalar w



How much do we move in that direction ?

• The value of the gradient (slope in our example)  
"
"#
𝐿(𝑓 𝑥;𝑤 , 𝑦) weighted by a learning rate η 

• Higher learning rate means move w faster
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example):

wt+1 = wt �h d
dw

L( f (x;w),y) (5.14)

Now let’s extend the intuition from a function of one scalar variable w to many
variables, because we don’t just want to move left or right, we want to know where
in the N-dimensional space (of the N parameters that make up q ) we should move.
The gradient is just such a vector; it expresses the directional components of the
sharpest slope along each of those N dimensions. If we’re just imagining two weight
dimensions (say for one weight w and one bias b), the gradient might be a vector with
two orthogonal components, each of which tells us how much the ground slopes in
the w dimension and in the b dimension. Fig. 5.4 shows a visualization of the value
of a 2-dimensional gradient vector taken at the red point.

Cost(w,b)

w
b

Figure 5.4 Visualization of the gradient vector at the red point in two dimensions w and b,
showing the gradient as a red arrow in the x-y plane.

In an actual logistic regression, the parameter vector w is much longer than 1 or
2, since the input feature vector x can be quite long, and we need a weight wi for
each xi. For each dimension/variable wi in w (plus the bias b), the gradient will have
a component that tells us the slope with respect to that variable. Essentially we’re
asking: “How much would a small change in that variable wi influence the total loss
function L?”

In each dimension wi, we express the slope as a partial derivative ∂
∂wi

of the loss
function. The gradient is then defined as a vector of these partials. We’ll represent ŷ
as f (x;q) to make the dependence on q more obvious:

—q L( f (x;q),y)) =

2

66664

∂
∂w1

L( f (x;q),y)
∂

∂w2
L( f (x;q),y)

...
∂

∂wn
L( f (x;q),y)

3

77775
(5.15)

The final equation for updating q based on the gradient is thus

qt+1 = qt �h—L( f (x;q),y) (5.16)



Now let's consider N dimensions

• We want to know where in the N-dimensional space (of the N 
parameters that make up θ ) we should move. 

• The gradient is just such a vector; it expresses the directional 
components of the sharpest slope along each of the N dimensions. 



Imagine 2 dimensions, w and b

• Visualizing the 
gradient vector at the 
red point

• It has two dimensions 
shown in the x-y 
plane
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learning rate times the gradient (or the slope, in our single-variable example):

wt+1 = wt �h d
dw

f (x;w) (5.14)

Now let’s extend the intuition from a function of one scalar variable w to many
variables, because we don’t just want to move left or right, we want to know where
in the N-dimensional space (of the N parameters that make up q ) we should move.
The gradient is just such a vector; it expresses the directional components of the
sharpest slope along each of those N dimensions. If we’re just imagining two weight
dimensions (say for one weight w and one bias b), the gradient might be a vector with
two orthogonal components, each of which tells us how much the ground slopes in
the w dimension and in the b dimension. Fig. 5.4 shows a visualization of the value
of a 2-dimensional gradient vector taken at the red point.

Cost(w,b)

w
b

Figure 5.4 Visualization of the gradient vector at the red point in two dimensions w and b,
showing the gradient as a red arrow in the x-y plane.

In an actual logistic regression, the parameter vector w is much longer than 1 or
2, since the input feature vector x can be quite long, and we need a weight wi for
each xi. For each dimension/variable wi in w (plus the bias b), the gradient will have
a component that tells us the slope with respect to that variable. Essentially we’re
asking: “How much would a small change in that variable wi influence the total loss
function L?”

In each dimension wi, we express the slope as a partial derivative ∂
∂wi

of the loss
function. The gradient is then defined as a vector of these partials. We’ll represent ŷ
as f (x;q) to make the dependence on q more obvious:

—q L( f (x;q),y)) =

2

66664

∂
∂w1

L( f (x;q),y)
∂

∂w2
L( f (x;q),y)

...
∂

∂wn
L( f (x;q),y)

3

77775
(5.15)

The final equation for updating q based on the gradient is thus

qt+1 = qt �h—L( f (x;q),y) (5.16)



Hyperparameters

• The learning rate η is a hyperparameter
• too high: the learner will take big steps and overshoot
• too low: the learner will take too long

• Hyperparameters:
• Briefly, a special kind of parameter for an ML model
• Instead of being learned by algorithm from supervision (like 

regular parameters), they are chosen by algorithm designer.



Regularization to Prevent Overfitting

• A model that perfectly match the training data has a problem

• It will overfit to the data, modeling noise 
• A random word that perfectly predicts y (it happens to only occur in one 

class) will get a very high weight. 
• Failing to generalize to a test set without this word. 

• A good model should generalize



Overfitting

•This movie drew me in, and 
it'll do the same to you.

43

X1 = "this"
X2 = "movie
X3 = "hated"

I can't tell you how much I hated this movie. It 
sucked.

X5 = "the same to you"
X7 = "tell you how much"

X4 = "drew me in"

+

-

Useful or harmless features

4gram features that just "memorize" 
training set and might cause 
problems



Overfitting
• 4-gram model on tiny data will just memorize the data

• 100% accuracy on the training set

• But it will be surprised by the novel 4-grams in the test data

• Models that are too powerful can overfit the data
• Fitting the details of the training data so exactly that the 

model doesn't generalize well to the test set
• How to avoid overfitting?

• Regularization in logistic regression 

44



Regularization

• A solution for overfitting
• Add a regularization term R(θ) to the loss function

• Idea: choose an R(θ) that penalizes large weights
• fitting the data well with lots of big weights not as good as fitting the 

data a little less well, with small weights
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data to the unseen test set, but a model that overfits will have poor generalization.
To avoid overfitting, a new regularization term R(q) is added to the objectiveregularization

function in Eq. 5.13, resulting in the following objective for a batch of m exam-
ples (slightly rewritten from Eq. 5.13 to be maximizing log probability rather than
minimizing loss, and removing the 1

m term which doesn’t affect the argmax):

q̂ = argmax
q

mX

i=1

logP(y(i)|x(i))�aR(q) (5.22)

The new regularization term R(q) is used to penalize large weights. Thus a setting
of the weights that matches the training data perfectly— but uses many weights with
high values to do so—will be penalized more than a setting that matches the data a
little less well, but does so using smaller weights. There are two common ways to
compute this regularization term R(q). L2 regularization is a quadratic function ofL2

regularization
the weight values, named because it uses the (square of the) L2 norm of the weight
values. The L2 norm, ||q ||2, is the same as the Euclidean distance of the vector q
from the origin. If q consists of n weights, then:

R(q) = ||q ||22 =
nX

j=1

q 2
j (5.23)

The L2 regularized objective function becomes:

q̂ = argmax
q

" mX

i=1

logP(y(i)|x(i))
#
�a

nX

j=1

q 2
j (5.24)

L1 regularization is a linear function of the weight values, named after the L1 normL1
regularization

||W ||1, the sum of the absolute values of the weights, or Manhattan distance (the
Manhattan distance is the distance you’d have to walk between two points in a city
with a street grid like New York):

R(q) = ||q ||1 =
nX

i=1

|qi| (5.25)

The L1 regularized objective function becomes:

q̂ = argmax
q

" mX

1=i

logP(y(i)|x(i))
#
�a

nX

j=1

|q j| (5.26)

These kinds of regularization come from statistics, where L1 regularization is called
lasso regression (Tibshirani, 1996) and L2 regularization is called ridge regression,lasso

ridge and both are commonly used in language processing. L2 regularization is easier to
optimize because of its simple derivative (the derivative of q 2 is just 2q ), while
L1 regularization is more complex (the derivative of |q | is non-continuous at zero).
But where L2 prefers weight vectors with many small weights, L1 prefers sparse
solutions with some larger weights but many more weights set to zero. Thus L1
regularization leads to much sparser weight vectors, that is, far fewer features.

Both L1 and L2 regularization have Bayesian interpretations as constraints on
the prior of how weights should look. L1 regularization can be viewed as a Laplace
prior on the weights. L2 regularization corresponds to assuming that weights are



L2 Regularization (= ridge regression)
• The sum of the squares of the weights
• The name is because this is the (square of the)        L2 norm

||θ||2, = Euclidean distance of θ to the origin.

• L2 regularized objective function:
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data to the unseen test set, but a model that overfits will have poor generalization.
To avoid overfitting, a new regularization term R(q) is added to the objectiveregularization

function in Eq. 5.13, resulting in the following objective for a batch of m exam-
ples (slightly rewritten from Eq. 5.13 to be maximizing log probability rather than
minimizing loss, and removing the 1

m term which doesn’t affect the argmax):

q̂ = argmax
q

mX

i=1

logP(y(i)|x(i))�aR(q) (5.22)

The new regularization term R(q) is used to penalize large weights. Thus a setting
of the weights that matches the training data perfectly— but uses many weights with
high values to do so—will be penalized more than a setting that matches the data a
little less well, but does so using smaller weights. There are two common ways to
compute this regularization term R(q). L2 regularization is a quadratic function ofL2

regularization
the weight values, named because it uses the (square of the) L2 norm of the weight
values. The L2 norm, ||q ||2, is the same as the Euclidean distance of the vector q
from the origin. If q consists of n weights, then:

R(q) = ||q ||22 =
nX

j=1

q 2
j (5.23)

The L2 regularized objective function becomes:

q̂ = argmax
q

" mX

i=1

logP(y(i)|x(i))
#
�a

nX

j=1

q 2
j (5.24)

L1 regularization is a linear function of the weight values, named after the L1 normL1
regularization

||W ||1, the sum of the absolute values of the weights, or Manhattan distance (the
Manhattan distance is the distance you’d have to walk between two points in a city
with a street grid like New York):

R(q) = ||q ||1 =
nX

i=1

|qi| (5.25)

The L1 regularized objective function becomes:

q̂ = argmax
q

" mX

1=i

logP(y(i)|x(i))
#
�a

nX

j=1

|q j| (5.26)

These kinds of regularization come from statistics, where L1 regularization is called
lasso regression (Tibshirani, 1996) and L2 regularization is called ridge regression,lasso

ridge and both are commonly used in language processing. L2 regularization is easier to
optimize because of its simple derivative (the derivative of q 2 is just 2q ), while
L1 regularization is more complex (the derivative of |q | is non-continuous at zero).
But where L2 prefers weight vectors with many small weights, L1 prefers sparse
solutions with some larger weights but many more weights set to zero. Thus L1
regularization leads to much sparser weight vectors, that is, far fewer features.

Both L1 and L2 regularization have Bayesian interpretations as constraints on
the prior of how weights should look. L1 regularization can be viewed as a Laplace
prior on the weights. L2 regularization corresponds to assuming that weights are
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data to the unseen test set, but a model that overfits will have poor generalization.
To avoid overfitting, a new regularization term R(q) is added to the objectiveregularization

function in Eq. 5.13, resulting in the following objective for a batch of m exam-
ples (slightly rewritten from Eq. 5.13 to be maximizing log probability rather than
minimizing loss, and removing the 1

m term which doesn’t affect the argmax):

q̂ = argmax
q

mX

i=1

logP(y(i)|x(i))�aR(q) (5.22)

The new regularization term R(q) is used to penalize large weights. Thus a setting
of the weights that matches the training data perfectly— but uses many weights with
high values to do so—will be penalized more than a setting that matches the data a
little less well, but does so using smaller weights. There are two common ways to
compute this regularization term R(q). L2 regularization is a quadratic function ofL2

regularization
the weight values, named because it uses the (square of the) L2 norm of the weight
values. The L2 norm, ||q ||2, is the same as the Euclidean distance of the vector q
from the origin. If q consists of n weights, then:

R(q) = ||q ||22 =
nX

j=1

q 2
j (5.23)

The L2 regularized objective function becomes:

q̂ = argmax
q

" mX

i=1

logP(y(i)|x(i))
#
�a

nX

j=1

q 2
j (5.24)

L1 regularization is a linear function of the weight values, named after the L1 normL1
regularization

||W ||1, the sum of the absolute values of the weights, or Manhattan distance (the
Manhattan distance is the distance you’d have to walk between two points in a city
with a street grid like New York):

R(q) = ||q ||1 =
nX

i=1

|qi| (5.25)

The L1 regularized objective function becomes:

q̂ = argmax
q

" mX

1=i

logP(y(i)|x(i))
#
�a

nX

j=1

|q j| (5.26)

These kinds of regularization come from statistics, where L1 regularization is called
lasso regression (Tibshirani, 1996) and L2 regularization is called ridge regression,lasso

ridge and both are commonly used in language processing. L2 regularization is easier to
optimize because of its simple derivative (the derivative of q 2 is just 2q ), while
L1 regularization is more complex (the derivative of |q | is non-continuous at zero).
But where L2 prefers weight vectors with many small weights, L1 prefers sparse
solutions with some larger weights but many more weights set to zero. Thus L1
regularization leads to much sparser weight vectors, that is, far fewer features.

Both L1 and L2 regularization have Bayesian interpretations as constraints on
the prior of how weights should look. L1 regularization can be viewed as a Laplace
prior on the weights. L2 regularization corresponds to assuming that weights are



L1 Regularization (= Lasso regression)
• The sum of the (absolute value of the) weights, L1 norm 

or Manhattan distance

• L1 regularized objective function:
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data to the unseen test set, but a model that overfits will have poor generalization.
To avoid overfitting, a new regularization term R(q) is added to the objectiveregularization

function in Eq. 5.13, resulting in the following objective for a batch of m exam-
ples (slightly rewritten from Eq. 5.13 to be maximizing log probability rather than
minimizing loss, and removing the 1

m term which doesn’t affect the argmax):

q̂ = argmax
q

mX

i=1

logP(y(i)|x(i))�aR(q) (5.22)

The new regularization term R(q) is used to penalize large weights. Thus a setting
of the weights that matches the training data perfectly— but uses many weights with
high values to do so—will be penalized more than a setting that matches the data a
little less well, but does so using smaller weights. There are two common ways to
compute this regularization term R(q). L2 regularization is a quadratic function ofL2

regularization
the weight values, named because it uses the (square of the) L2 norm of the weight
values. The L2 norm, ||q ||2, is the same as the Euclidean distance of the vector q
from the origin. If q consists of n weights, then:

R(q) = ||q ||22 =
nX

j=1

q 2
j (5.23)

The L2 regularized objective function becomes:

q̂ = argmax
q

" mX

i=1

logP(y(i)|x(i))
#
�a

nX

j=1

q 2
j (5.24)

L1 regularization is a linear function of the weight values, named after the L1 normL1
regularization

||W ||1, the sum of the absolute values of the weights, or Manhattan distance (the
Manhattan distance is the distance you’d have to walk between two points in a city
with a street grid like New York):

R(q) = ||q ||1 =
nX

i=1

|qi| (5.25)

The L1 regularized objective function becomes:

q̂ = argmax
q

" mX

1=i

logP(y(i)|x(i))
#
�a

nX

j=1

|q j| (5.26)

These kinds of regularization come from statistics, where L1 regularization is called
lasso regression (Tibshirani, 1996) and L2 regularization is called ridge regression,lasso

ridge and both are commonly used in language processing. L2 regularization is easier to
optimize because of its simple derivative (the derivative of q 2 is just 2q ), while
L1 regularization is more complex (the derivative of |q | is non-continuous at zero).
But where L2 prefers weight vectors with many small weights, L1 prefers sparse
solutions with some larger weights but many more weights set to zero. Thus L1
regularization leads to much sparser weight vectors, that is, far fewer features.

Both L1 and L2 regularization have Bayesian interpretations as constraints on
the prior of how weights should look. L1 regularization can be viewed as a Laplace
prior on the weights. L2 regularization corresponds to assuming that weights are
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data to the unseen test set, but a model that overfits will have poor generalization.
To avoid overfitting, a new regularization term R(q) is added to the objectiveregularization

function in Eq. 5.13, resulting in the following objective for a batch of m exam-
ples (slightly rewritten from Eq. 5.13 to be maximizing log probability rather than
minimizing loss, and removing the 1

m term which doesn’t affect the argmax):

q̂ = argmax
q

mX

i=1

logP(y(i)|x(i))�aR(q) (5.22)

The new regularization term R(q) is used to penalize large weights. Thus a setting
of the weights that matches the training data perfectly— but uses many weights with
high values to do so—will be penalized more than a setting that matches the data a
little less well, but does so using smaller weights. There are two common ways to
compute this regularization term R(q). L2 regularization is a quadratic function ofL2

regularization
the weight values, named because it uses the (square of the) L2 norm of the weight
values. The L2 norm, ||q ||2, is the same as the Euclidean distance of the vector q
from the origin. If q consists of n weights, then:

R(q) = ||q ||22 =
nX

j=1

q 2
j (5.23)

The L2 regularized objective function becomes:

q̂ = argmax
q

" mX

i=1

logP(y(i)|x(i))
#
�a

nX

j=1

q 2
j (5.24)

L1 regularization is a linear function of the weight values, named after the L1 normL1
regularization

||W ||1, the sum of the absolute values of the weights, or Manhattan distance (the
Manhattan distance is the distance you’d have to walk between two points in a city
with a street grid like New York):

R(q) = ||q ||1 =
nX

i=1

|qi| (5.25)

The L1 regularized objective function becomes:

q̂ = argmax
q

" mX

1=i

logP(y(i)|x(i))
#
�a

nX

j=1

|q j| (5.26)

These kinds of regularization come from statistics, where L1 regularization is called
lasso regression (Tibshirani, 1996) and L2 regularization is called ridge regression,lasso

ridge and both are commonly used in language processing. L2 regularization is easier to
optimize because of its simple derivative (the derivative of q 2 is just 2q ), while
L1 regularization is more complex (the derivative of |q | is non-continuous at zero).
But where L2 prefers weight vectors with many small weights, L1 prefers sparse
solutions with some larger weights but many more weights set to zero. Thus L1
regularization leads to much sparser weight vectors, that is, far fewer features.

Both L1 and L2 regularization have Bayesian interpretations as constraints on
the prior of how weights should look. L1 regularization can be viewed as a Laplace
prior on the weights. L2 regularization corresponds to assuming that weights are



Optimization
• Gradient descent–batch optimization– each update to the 

weights is based on a computation involving the entire dataset 
• Inefficient–at early stages of training, a small number of 

training examples could point the learner in the correct 
direction

• Stochastic gradient descent, the approximate gradient is 
computed by randomly sampling a single instance, and an 
update is made immediately 

• In mini- batch stochastic gradient descent, the gradient is 
computed over a small set of instances 

48



Naïve Bayes vs Logistic Regression
• Twitter sentiment classification

49

Accuracy (%) 67 77
Precision (%) 69 74

Naïve Bayes Logistic Regression
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Word-Level Models

• Words as units of text

• Syntactic properties, semantic properties

• How do we derive meaning?

• Language described from 3 perspectives
• Relations between words
• Compositionality of how words are formed
• Distributional properties of co-occurrence
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Relation Between Words

• Do they have the same conjugation? (morphology)

• Are they the same part of speech? (syntactic)

• Are they related in meaning? (semantic)
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WordNet

• Manually created ontology
• Word relations–synonymy, hypernymy
• Notion of word similarity
• Task-dependent ontology construction 

• Multilingual
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Compositionality

• Creating meaning from constituent parts
• Putting together words (compounding)
• Adding suffixes
• Putting together words to form phrases and sentences
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Word sense ambiguity

• Iraqi head seeks arms

• Drunk gets nine years in violin case 
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Why disambiguate word sense?

information retrieval 
–query: bat care

machine translation 
– bat: murciélago (animal) or bate (for baseball) 

text-to-speech
–bass (stringed instrument) vs. bass (fish) 
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Distributional Property

• Creating meaning from context

• Prominent paradigm for computational models of meaning



Distributional Semantics
• What is tesgüino?

(a) A bottle of tesgüino is on the table

(b) People like tesgüino.

(c) Don’t have tesgüino before you drive.

(d) Tesgüino is made out of corn



Distributional Hypothesis
(C1) A bottle of _______is on the table
(C2) People like _______.
(C3) Don’t have ______ before you drive.
(C4) _______ is made out of corn

C1 C2 C3 C4

tesgüino 1 1 1 1
loud 0 0 0 0
Motor oil 1 0 0 1
tortillas 0 1 0 1
choices 0 1 0 0
wine 1 1 1 1



Distributional Hypothesis

Distributional hypothesis, stated by linguist John R. Firth (1957) as: 
“You shall know a word by the company it keeps.” 
≈ “words that occur in similar contexts tend to have similar meanings”

One of the most successful ideas of modern statistical NLP





Next Lecture: Distributed Representation 
of Words


