Problem 1
Consider

$$
\left(\omega_{j}-\frac{1}{\eta_{g} \eta_{t}} h_{j} \rho-\frac{1}{\eta_{t}} \nu_{j}\right) g_{j}=0 \quad j=k+1, \ldots, J
$$

Since $v_{j}>0$ if unit j is una to charge

$$
\omega_{j}-\left\{(\rho-\beta) L_{j}-\xi_{j}\right\} \eta_{i} \eta_{c}=0
$$

or

$$
w_{j}=\left\{(\rho-\beta) h_{j}-\xi_{j}\right\} \eta_{t} \eta_{c}
$$

We leno that $\beta \geqslant 0$ and $\xi \geqslant \geqslant 0$

$$
\omega_{j} \leq \rho h_{j} \eta_{t} \eta_{c} \quad j=1, \ldots, k
$$

Let

$$
\lambda_{c}=\max \left\{\frac{\omega_{j}}{k_{j}}: j=1, \ldots, k\right\}
$$

Then,

$$
\frac{\omega_{j}}{h_{j}} \leq \rho \eta_{t} \eta_{c} \quad \forall j=1, \ldots, k \Rightarrow \lambda_{c} \leq \rho \eta_{t} \eta_{c}
$$

Consider

$$
\left[\omega_{j}-\left\{(p-\beta) L_{j}-\xi_{j}\right\} \eta_{t} \eta_{c}\right] v_{j}=0 \quad j=1, \ldots, k
$$

Since $j_{j}>0$ if storage generation

$$
\omega_{j}-\frac{1}{n_{p} n_{t}} l_{j \rho}-\frac{1}{n_{t}} \gamma_{j}=0 \quad \jmath=k+1, \ldots, J
$$

or $\omega_{j}=\frac{1}{\eta_{j} \eta_{t}} h_{j \rho}+\frac{1}{\eta_{c}} \nu_{j}$
Now $V_{j} \geqslant 0 \Rightarrow$

$$
\omega_{j} \quad \geqslant \frac{1}{\eta_{q} n_{t}} h_{j} \rho
$$

Let
Then,

$$
\lambda_{g}=\min \left\{\frac{\omega_{j}}{h_{j}}: j=k+1, \ldots, J\right\}
$$

$$
\frac{\omega_{j}}{\hbar_{j}} \geqslant \frac{1}{n_{g} n_{t}} \rho \quad \forall j=K+1, \ldots, J \Rightarrow \lambda_{g} \geqslant \frac{1}{n_{j} n_{t}} \rho_{Q E D}
$$

Problem 2

$$
\begin{aligned}
\tilde{\varepsilon}_{j}^{c}= & \text { EXPECTEd ENETTGY THAT CAN PE USED FORT CHARGING AN } \\
& \text { ENERGY STORAGE PLANT, PROVIDED BY UNIT, }
\end{aligned}
$$

IF j IS THE FIAT BLOCK OF A 3-STATE UNIT:

$$
\tilde{\varepsilon}_{j}^{c}=T\left\{p_{j} \int_{c_{j-1}}^{c_{j-1}+d_{j}}\left(1-\mathscr{L}_{j-1}(x) d x+s_{j} \int_{c_{j-1}+d_{j}}^{c_{j}}\left(1-\mathcal{L}_{j-1}(x)\right) d x\right\}\right.
$$

$$
=T\left\{p_{j} d_{j}+s_{j}\left(c_{j}-d_{j}\right)\right\}-\varepsilon_{j}
$$

$$
=T\left\{d_{j}\left(p_{j}-s_{j}\right)+s_{j} c_{j}\right\}-\varepsilon_{j}
$$

$$
\begin{aligned}
& =T\left(r_{j} d\right. \\
& c_{J}<d j
\end{aligned}
$$

$$
\begin{aligned}
& \text { If } C_{J}<d j \\
& \text { Then it practically becomes a two state unit. }
\end{aligned}
$$

```
(ii) IF \(j\) IS THE SELOND BLOCK OFA 2-STATE UNIT.
ASSUMING THAT i IS THE FIRST BLOCK TO BE LOADED AND
THE TOTM CAPAUTY OF THE 2 -STATE UNIT IS \(c_{\alpha}\) :
```



```
The probability of the UNIt being avalable is pa
THE ENERGY ANAILABLE FROM \(i\) FOR CHARGING THE SPORAGE UNTT IS EQUIVALENT TO THE GENETAL CASE PREVIOULC DESCAIBED.
WHEN THE SECOND BLOCK IS CHAFGGED THE AVAILABUE
ENERGY TOR CHARGING IS DETETMMINED ACORPDING TO THE SHADED ATTEA:
```



```
\[
\tilde{\varepsilon}_{j}^{c}=p_{\alpha} T \int_{c_{j-1}}^{c_{j}}\left(1-\mathscr{L}_{I}(x)\right) d x
\]
WHETE \(\mathscr{L}_{I}(x)=1-F_{I}(x)\)
Whette \(\frac{I}{\sim}\) is the equivalent wad mesuiting from LOAOING ALL UNITS EXCEPT \(\alpha\).
```


Problem 3

We have the set \mathfrak{s} of $S P$'s

$$
\boldsymbol{S}=\left\{\boldsymbol{s}_{1}, \boldsymbol{s}_{2}, \ldots \boldsymbol{s}_{\boldsymbol{m}}\right\}
$$

with $\boldsymbol{\eta}_{s_{i}} \geq \boldsymbol{\eta}_{s_{i+1}} \forall \boldsymbol{i}=1,2, \ldots(\boldsymbol{m}-1)$.

We adapt the algorithm in order to be able to simulate all of them:

