ECE588: Solution Homework 1

- Problem 1 : Every multi-state unit has the following distribution function:

$$
\begin{equation*}
f_{\underline{A}_{i}}(x)=p_{i} \delta\left(x-c_{i}\right)+\sum_{j=1}^{k-2} s_{i}^{j} \delta\left(x-d_{i}^{j}\right)+\left(1-\sum_{j=1}^{k-2} s_{i}^{j}-p_{i}\right) \delta(x) \tag{1}
\end{equation*}
$$

Where $0<d_{i}^{k-2}<d_{i}^{k-3}<\ldots d_{i}^{1}<c_{i}$.
To find the distribution function of the sum of a set of this random variables, due to statistical independence, we can use the fact that the distribution of $A=A_{1}+A_{2}+\ldots+A_{n}$ is equal to the n -convolution of the distributions,

$$
\begin{equation*}
f_{\underline{A}}(x)=f_{\underline{A}_{1}}(x) * f_{\underline{A}_{2}}(x) * f_{\underline{A}_{3}}(x) \ldots * f_{\underline{A}_{N}}(x) \tag{2}
\end{equation*}
$$

The above equation is the generalization to the case with 2 random variables like lecture notes. Then using this distribution, we can find $P\left\{\sum_{l=1}^{i} \underline{A}_{l} \leq x\right\}$ in the following way,

$$
\begin{equation*}
P\left\{\sum_{l=1}^{i} \underline{A}_{l} \leq x\right\}=\int_{0}^{x} f_{\underline{A}}(y) d y \tag{3}
\end{equation*}
$$

We can also find an equivalent formula following the steps in lecture notes for the case of two-state system.

Let

$$
\begin{equation*}
\underline{Z}=\sum_{j=1}^{i-1} \underline{A}_{j} \tag{4}
\end{equation*}
$$

and

$$
\begin{equation*}
\underline{Y}=\underline{A}_{i} \tag{5}
\end{equation*}
$$

, then

$$
\begin{equation*}
P\left\{\sum_{l=1}^{i} \underline{A}_{l} \leq x\right\}=F_{\underline{Z}+\underline{Y}}(x)=\int_{-\infty}^{\infty} F_{\underline{Z}}(x-m) f_{\underline{Y}}(m) d m \tag{6}
\end{equation*}
$$

Using (1) into (6) we obtain that,

$$
\begin{equation*}
P\left\{\sum_{l=1}^{i} \underline{A}_{l} \leq x\right\}=\left(1-\sum_{j=1}^{k-2} s_{i}^{j}-p_{i}\right) P\{\underline{Z} \leq x\}+\sum_{j=1}^{k-2} s_{i}^{j} P\left\{\underline{Z} \leq x-d_{i}^{j}\right\}+p_{i} P\left\{\underline{Z} \leq x-c_{i}\right\} \tag{7}
\end{equation*}
$$

- Problem 2 :

i	$c_{i}(M W)$	p_{i}
1	400	.99
2	500	.98
3	600	.97

From the above table it is possible to build first a table from operation of units 1 and 2 :

- Capacity $=0,1$ down and 2 down, $\left(1-p_{1}\right)\left(1-p_{2}\right)=0.01 \times 0.02=0.0002$
- Capacity $=400,1$ up and 2 down, $\left(p_{1}\right)\left(1-p_{2}\right)=0.99 \times 0.02=0.0198$
- Capacity $=500,1$ down and 2 up, $\left(1-p_{1}\right)\left(p_{2}\right)=0.01 \times 0.98=0.0098$
- Capacity $=900,1$ up and 2 up, $\left(p_{1}\right)\left(p_{2}\right)=0.99 \times 0.98=0.9799=0.9702$

Now adding unit 3 , we obtain:

- Capacity $=0,1$ down, 2 down and 3 down, $\left(1-p_{1}\right)\left(1-p_{2}\right)\left(1-p_{3}\right)=0.0002 \times 0.03=0.000006$
- Capacity $=400,1$ up, 2 down and 3 down, $\left(p_{1}\right)\left(1-p_{2}\right)\left(1-p_{3}\right)=0.0198 \times 0.03=0.000594$
- Capacity $=500,1$ down, 2 up and 3 down, $\left(1-p_{1}\right)\left(p_{2}\right)\left(1-p_{3}\right)=0.0098 \times 0.03=0.000294$
- Capacity $=600,1$ down, 2 down and 3 up, $\left(1-p_{1}\right)\left(1-p_{2}\right)\left(p_{3}\right)=0.0002 \times 0.97=0.000194$
- Capacity $=900,1$ up, 2 up and 3 down, $\left(p_{1}\right)\left(p_{2}\right)\left(1-p_{3}\right)=0.9702 \times 0.03=0.029106$
- Capacity $=1000,1$ up, 2 down and 3 up, $\left(p_{1}\right)\left(1-p_{2}\right)\left(p_{3}\right)=0.0198 \times 0.97=0.019206$
- Capacity $=1100,1$ down, 2 up and 3 up, $\left(1-p_{1}\right)\left(p_{2}\right)\left(p_{3}\right)=0.0098 \times 0.97=0.009506$
- Capacity $=1500,1$ up, 2 up and 3 up, $\left(p_{1}\right)\left(p_{2}\right)\left(p_{3}\right)=0.9702 \times 0.97=0.941094$
- Problem 3 :

Day	Sun	Mon	Tue	Wed	Thur	Fri	Sat
Daily peak $M W$	600	1100	1200	1100	1200	1200	800

Using the definition of $L O L P_{\text {week }}$,

$$
\begin{equation*}
L O L P_{\text {week }}=\frac{1}{7} \sum_{i=1}^{7} L O L P_{d_{i}} \tag{8}
\end{equation*}
$$

So we need to calculate $\operatorname{LOLP}(600), \operatorname{LOLP}(800), \operatorname{LOLP}(1100), \operatorname{LOLP}(1200)$. To do this we use information of problem 2 and definition of $L O L P$,

$$
\begin{equation*}
L O L P(l)=P\left\{\sum_{i} \underline{A}<l\right\} \tag{9}
\end{equation*}
$$

The random variable $\sum_{i} \underline{A}$ has in this case the distribution,

$$
\begin{align*}
& f(x)=0.000006 \delta(x)+0.000594 \delta(x-400)+0.000294 \delta(x-500)+0.000194 \delta(x-600) \\
& +0.029106 \delta(x-900)+0.019206 \delta(x-1000)+0.009506 \delta(x-1100)+0.941094 \delta(x-1500) \tag{10}
\end{align*}
$$

So using $L O L P(l)=\int_{-\infty}^{l} f(x) d x$ we obtain,

$$
\begin{align*}
& L O L P(600)=0.000006+0.000594+0.000294=0.000894 \\
& L O L P(800)=0.000894+0.000194=0.001088 \\
& L O L P(1100)=0.001088+0.029106+0.019206=0.0494 \tag{11}\\
& L O L P(1200)=0.0494+0.009506=0.058906
\end{align*}
$$

Finally $L O L P_{\text {week }}$ is,

$$
\begin{equation*}
L O L P_{\text {week }}=\frac{1}{7}\left\{0.000894+2 \times 0.0494+3 \times 0.058906+0.001088=\frac{0.2775}{7}\right\}\left[\frac{\text { days }}{\text { days }}\right]=0.2775\left[\frac{\text { days }}{\text { week }}\right] \tag{12}
\end{equation*}
$$

Weekly $L O L P$ is expressed in days/week that means that the probability of loss of load is 0.2775 days by week or 1 day in 3.6036 weeks.

- Problem 4 : Without loss loss of generality we can suppose that the period is 1 day (any other period can be scaled).In this case $L O L E^{d}$ will be:

$$
\begin{equation*}
L O L E^{d}=L O L P\left(l_{\text {day }}\right) \frac{\text { days }}{\text { day }} \tag{13}
\end{equation*}
$$

In the same period of time, the $L O L E^{h}$ will be:

$$
\begin{equation*}
L O L E^{h}=\sum_{i=1}^{24} L O L P\left(l_{i}\right) \frac{\text { hours }}{24 \text { hours }} \tag{14}
\end{equation*}
$$

We can restrict the maximum value of (14) if we use the maximum value of $\operatorname{LOLP}\left(l_{i}\right)$ in the period, that correspond to the peak hourly load :

$$
\begin{equation*}
L O L E^{h}=\sum_{i=1}^{24} L O L P\left(l_{i}\right) \frac{\text { hours }}{24 \text { hours }} \leq \sum_{i=1}^{24} L O L P\left(l_{\text {peak }}\right) \frac{\text { hours }}{24 \text { hours }}=24 L O L P\left(l_{\text {peak }}\right) \frac{\text { hours }}{24 \text { hours }} \tag{15}
\end{equation*}
$$

But $L O L P\left(l_{\text {peak }}\right)$ in this case is equal to $\operatorname{LOLP}\left(l_{\text {day }}\right)$ if we use the assumption that the daily load is computed using the peak hourly load and by (13) the value is the same that $L O L E^{d}$. Using this fact in (15), we arrive to:

$$
\begin{equation*}
L O L E^{h} \leq 24 L O L E^{d} \tag{16}
\end{equation*}
$$

- Problem 5 :

We use $T=1$ with the different peak-loads, $l=600,800,1100,1200$.

$$
\begin{align*}
\mathcal{U}(600) & =(600-0) P\{0\}+(600-400) P\{400\}+(600-500) P\{500\} \\
& =600 \times 0.000006+200 \times 0.000594+100 \times 0.000294=0.1518 M W h \tag{17}
\end{align*}
$$

$$
\begin{aligned}
\mathcal{U}(1100) & =(1100-0) P\{0\}+(1100-400) P\{400\}+(1100-500) P\{500\}+(1100-600) P\{600\} \\
& +(1100-900) P\{900\}+(1100-1000) P\{1000\} \\
& =1100 \times 0.000006+700 \times 0.000594+600 \times 0.000294+500 \times 0.000194 \\
& +200 \times 0.029106+100 \times 0.019206=8.4376 M W h
\end{aligned}
$$

$$
\begin{align*}
\mathcal{U}(1200) & =(1200-0) P\{0\}+(1200-400) P\{400\}+(1200-500) P\{500\}+(1200-600) P\{600\} \\
& +(1200-900) P\{900\}+(1200-1000) P\{1000\}+(1200-1100) P\{1100\} \tag{20}\\
& =1200 \times 0.000006+800 \times 0.000594+700 \times 0.000294+600 \times 0.000194 \\
& +300 \times 0.029106+200 \times 0.019206+100 \times 0.009506=14.3282 M W h
\end{align*}
$$

