ASSIGNMENT 4

Reading Assignment: Text: Chapter 4. Correspondence 10
Suggested Reading: Curtain & Pritchard: Chp 5 (pp. 75-84).
 Review probability theory and stochastic processes from any (graduate) text of your choice.

Notice : On February 28, we will start class at 9:30 am

Problems (to be handed in): Due Date: Thursday, February 28.

This first problem of this set is related to the topic of “wavelets” (which I briefly introduced in class), but no prior knowledge of wavelets is necessary to solve it.

33. Let \(J \) be an index set, and \(\{\xi_j\}_{j \in J} \) a family of functions in a (complex) Hilbert space \(H \). This family is called a frame if there exist constants \(A > 0, B < \infty \) such that for all \(f \in H \),

\[
A \|f\|^2 \leq \sum_{j \in J} |(f, \xi_j)|^2 \leq B \|f\|^2
\]

Here \(A \) and \(B \) are called frame bounds. If \(A = B \), then the frame is said to be a tight frame. (Note that the family \(\{\xi_j\}_{j \in J} \) is not necessarily orthogonal, or even linearly independent.)

i) Show that if the family \(\{\xi_j\}_{j \in J} \) constitutes a tight frame, then

\[
f = A^{-1} \sum_{j \in J} (f, \xi_j) \xi_j
\]

Hint: First verify the following identity in \(H \), which will prove useful in establishing the desired result: For any \(f, g \in H \):

\[
4(f, g) = \|f + g\|^2 - \|f - g\|^2 + i\|f + ig\|^2 - i\|f - ig\|^2
\]

ii) To show that it is possible for \(\{\xi_j\}_{j \in J} \) to be a tight frame, without being orthogonal or linearly independent, consider the following (counter-)example:

\[
H = \mathbb{C}^2, \quad \xi_1 = (0, 1)^T, \quad \xi_2 = (-\frac{\sqrt{3}}{2}, -\frac{1}{2})^T, \quad \xi_3 = (\frac{\sqrt{3}}{2}, -\frac{1}{2})^T
\]

Show that the triplet \(\{\xi_1, \xi_2, \xi_3\} \) does indeed constitute a tight frame.

What is the frame bound \(A \)?
iii) Prove that, again for the general case, if \(\{\xi_j\}_{j \in J} \) is a tight frame, with frame bound \(A = 1 \), and if \(\|\xi_j\| = 1 \) \(\forall j \in J \), then the \(\xi_j \)'s constitute an orthonormal basis for \(H \).

The remaining problems in this set are all on the topic of Hilbert Spaces of Random Variables and Stochastic Processes.

34. Let \((\Omega, \mathcal{F}, \mathcal{P})\) be a probability space, and \(L_2(\Omega, \mathcal{P}; \mathbb{R}^n)\) be the Hilbert space of second-order random vectors (of dimension \(n \)) defined on \((\Omega, \mathcal{F}, \mathcal{P})\), with inner product
\[
(x, z) = E[x^T Q z]
\]
where \(Q \) is a given (fixed) positive-definite matrix of dimension \(n \times n \). Let \(\{y_0, \ldots, y_i\} \) be \(m \)-dimensional random vectors defined on \((\Omega, \mathcal{F}, \mathcal{P})\), which are uncorrelated and have zero mean. Let \(M_{nm} \) be the class of all \(n \times m \) matrices with bounded entries, and consider the following optimization problem for a given \(x \in L_2(\Omega, \mathcal{P}; \mathbb{R}^n) \):
\[
\|x - \sum_{j=0}^i \hat{K}_j y_j\| = \inf_{K_j \in M_{nm}} \|x - \sum_{j=0}^i K_j y_j\|.
\]

i) Solve for the optimal \(\hat{K}_j \), \(j = 0, \ldots, i \). Is the solution unique?

ii) Let \(\epsilon_k = \|x - \sum_{j=0}^k \hat{K}_j y_j\|^2 \), and obtain a recursive (linear first-order difference) equation for \(\epsilon_k \).

35. Let \((\Omega, \mathcal{F}, \mathcal{P})\) be a probability space, and \(x, y_1, y_2 \) three zero-mean second-order random variables defined on this space, with \(y_1 \) and \(y_2 \) uncorrelated. Let \(Z \) be the class of random variables \(z = a_1 y_1 + a_2 y_2 \), where the coefficients \(a_1 \) and \(a_2 \) are restricted to be nonnegative (that is, \(a_1 \geq 0, a_2 \geq 0 \)). We seek a best approximation to \(x \) in \(Z \) in the minimum mean square sense, that is an \(\hat{x} \in Z \) such that
\[
\inf_{z \in Z} E[(x - z)^2] = E[(x - \hat{x})^2]
\]

i) Formulate this problem as one of minimum distance to a convex set in a Hilbert space.

ii) Does there exist a unique solution? Justify your answer.

iii) Compute \(\hat{x} \) and \(E[(x - \hat{x})^2] \) when
\[
E[(y_1)^2] = E[(y_2)^2] = E[x^2] = 1, \quad E[y_1 x] = 0.2, \quad E[y_2 x] = -0.5.
\]

36. Let \((\Omega, \mathcal{F}, \mathcal{P})\) be a probability space, and \(y \) a random variable on it, with \(E[y] = 1 \) and \(E[y^2] = 2 \). We wish to find another random variable, \(x \), on the same probability space, with minimum second moment, and satisfying the constraints \(E[xy] = 2 \) and \(E[x] = -1 \).

ii) Obtain the solution if it exists.

iii) What would the solution be if the second equality constraint is replaced by the inequality constraint: $E[x] \geq -1$

37. Let Y_1 and Y_2 be uncorrelated second-order random variables defined on a given probability space $(\Omega, \mathcal{F}, \mathcal{P})$. Let $L_2(\Omega, \mathcal{F}; C[0,1])$ be the space of all parametrized (in t) random variables (equivalently, stochastic processes) $X(t;\omega)$, where for fixed $t \in [0,1]$, $X(t;\cdot)$ is a second-order random variable on $(\Omega, \mathcal{F}, \mathcal{P})$ and for fixed $\omega \in \Omega$, $X(\cdot;\omega) \in C[0,1]$. Define the inner product on $L_2(\Omega, \mathcal{F}; C[0,1])$ by

$$(X, Z) = E\left[\int_0^1 X(t;\omega) Z(t;\omega) w(t) \, dt \right];$$

where $w(\cdot) > 0$ is in $C[0,1]$. Determine a stochastic process $\hat{X}(t;\omega) \in L_2(\Omega, \mathcal{F}; C[0,1])$ which has minimum norm and satisfies the equalities:

$$E\left[\int_0^1 \hat{X}(t;\omega) k_i(t) Y_i(\omega) \, dt \right] = c_i, \quad i = 1, 2,$$

where k_1, k_2 are linearly independent elements out of $C[0,1]$, and c_1, c_2 are given constants.

38. Let X be a second-order random variable defined on a given probability space $(\Omega, \mathcal{F}, \mathcal{P})$, and $Y(t;\omega)$ be a second-order stochastic process defined on the same probability space, with $t \in [0,2]$, which is correlated with X, with the cross-correlation function given by $R_{XY}(t) = E[XY(t)]$. Further let $R_{YY}(t,s)$ denote the auto-correlation function of Y. We are interested in finding a linear least squares (l.l.s.) estimate of X given the measurement process $Y(t;\omega)$ over the interval $[0,2]$, that is an estimate in the form

$$m(\omega) = \int_0^2 K(t) Y(t;\omega) \, dt$$

for some function $K(\cdot)$.

i) Show that there exists a unique such l.l.s. estimate, and obtain the equation satisfied by a corresponding optimum $K(\cdot)$ in terms of R_{XY} and R_{YY}. Under what conditions is the optimum $K(\cdot)$ unique?

ii) Redo (i) above when $K(\cdot)$ is restricted to be a constant (independent of time).