Notes On

HAHN-BANACH THEOREM

Extension Form

I start with a definition – that of a sublinear functional.

Definition. Let X be a real vector space (not necessarily normed). A map $p : X \to \mathbb{R}$ is called a sublinear functional if it satisfies the following two properties:

$$
\begin{align*}
p(x + y) &\leq p(x) + p(y) \quad \forall x, y \in X \quad \text{(subadditive)} \\
p(\alpha x) &= \alpha p(x) \quad \forall \alpha \geq 0, \forall x \in X \quad \text{(positive homogeneity)}
\end{align*}
$$

Note that “norm” is a sublinear functional.

The next result is a useful property of sublinear functionals.

Lemma. Let $M \subset X$ be a subspace, and f a linear functional on M, such that for some sublinear functional p,

$$
 f(x) \leq p(x) \quad \forall x \in M.
$$

Let x_0 be a fixed element of X. Then, for any real number c, the following are equivalent:

$$
 f(x) + \lambda c \leq p(x + \lambda x_0) \quad \forall x \in M, \lambda \in \mathbb{R} \quad (1)
$$

$$
 -p(-x - x_0) - f(x) \leq c \leq p(x + x_0) - f(x) \quad \forall x \in M \quad (2)
$$

Furthermore, there is a real number c satisfying (2) and hence (1).

Proof: To show that (1) \Rightarrow (2), first set $\lambda = 1$, and then set $\lambda = -1$ and replace x by $-x$; then (2) is immediate. To show the converse, first take $\lambda > 0$, and replace x by x/λ on the RHS inequality, to obtain (1). Now take $\lambda < 0$, and replace x by x/λ on the LHS inequality, to arrive again at (1). For $\lambda = 0$, (1) is always satisfied, from the definitions of f and p. To produce the desired c, let x, y be arbitrary elements out of M. Then,

$$
 f(x) - f(y) = f(x - y) \leq p(x - y)
$$

$$
 \leq p(x + x_0) + p(-y - x_0) \quad \text{by subadditivity}
$$

$$
 \Rightarrow -p(-y - x_0) - f(y) \leq p(x + x_0) - f(x) \quad \forall x, y \in M
$$

$$
 \Rightarrow \sup_{y \in M} (-p(-y - x_0) - f(y)) \leq \inf_{x \in M} \{p(x + x_0) - f(x)\}
$$

Any c between the “sup” and “inf” values will do it. \hfill \diamond

Now we have the main theorem.

Theorem (Hahn-Banach). Given a real linear vector space X and a subspace M, let p be a sublinear functional on X, and f a linear functional on M such that $f(x) \leq p(x)$ \quad $\forall x \in M$. Then, there is a linear functional F on X such that $F = f$ on M and $F \leq p$ on all of X.

Proof. Let $x_0 \not\in M, x_0 \in X$, and consider the subspace M_0 consisting of all elements $x + \lambda x_0, x \in M, \lambda \in \mathbb{R}$. We may extend f to a linear functional on M_0 by defining

$$
 f_0(x + \lambda x_0) = f(x) + \lambda c
$$
where c is any real number. Now choose c such that it satisfies condition (2) in the previous Lemma. Then,

$$f_0(x + \lambda x_0) \leq p(x + \lambda x_0), \quad \iff f_0 \leq p \quad \text{on } M_0$$

Hence, we have seen how to extend f from M to M_0, which is of dimension one higher than that of M (assuming that M is finite-dimensional).

1. If X is normed and separable, then we can find a countable set of vectors $\{x_0, x_1, \ldots\}$, all linearly independent and not in M, so that every element in X can be approximated to any degree by linear combinations of vectors out of M and $\{x_0, x_1, \ldots\}$. Let $M_i = M_{i-1} + \lambda x_i$, which is a subspace. If $y \in M_i$, we can write it as $y = x + \lambda x_i$, where $x \in M_{i-1}$ and $\lambda \in \mathbb{R}$. Define

$$f_i(x + \lambda x_i) = f_{i-1}(x) + \lambda c_i$$

where c_i is as in the Lemma with f replaced by f_{i-1}. This then shows how we can extend f recursively to a countable dense subset of X. Call this extension g, which is naturally linear. By construction, $g \leq p \quad \forall x \in S$, where S is a dense subset of X. Now, to extend g to X, let $x \in X$ be given and $\{s_n\}$ be a sequence out of S converging to x. Then, the limit $\lim_{n \to \infty} g(s_n)$ is well defined; call this $F(x)$. This defines F pointwise. F is obviously linear. Furthermore, since $g(s_n) \leq p(s_n) \quad \forall s_n \in S$, we have

$$F(x) \leq p(x) \quad \forall x \in X.$$

2. If X is not a separable normed space, we cannot find an ordered set of vectors to form a basis for a dense subset. Then, the proof will have to be modified, where the strict ordering is replaced by partial ordering, and Zorn’s Lemma is used. Zorn’s Lemma says that: “If P is a partially ordered set in which every chain has an upper bound, then P possesses a maximal element.” This is equivalent to the Axiom of Choice, which says the following: “Given a nonempty class of disjoint nonempty sets, a set can be formed which contains precisely one element taken from each set in the given class.” To use this in our proof, let C be the collection of all pairs (h, H) where h is an extension of f to the subspace $H \supseteq M$, and $h \leq p$ on H. Partially order C by $(h_1, H_1) \leq (h_2, H_2)$ iff $H_1 \subseteq H_2$ and $h_1 = h_2$ on H_1. Then, every chain in C has an upper bound (consider the union of all subspaces in the chain). This implies by Zorn’s Lemma that C has a maximal element. Call this (F, F). If $F \neq X$, then this means that we can extend F to a larger subspace – but this contradicts its maximality. Hence F is defined on X.

The two corollaries below follow from the Hahn-Banach theorem. I provide a proof for only the first one.

Corollary 1. Let f be a continuous linear functional defined on a subspace M of X, a normed linear space. Then, there exists $F \in X^*$ such that $\|f\|_M = \|F\|_X$ and F is an extension of f.

Proof. Take $p(x) = \|f\|_M \|x\|_X$ in the Hahn-Banach Theorem, which is clearly a sublinear functional. Now note that

$$F(x) \leq p(x) = \|f\|_M \|x\|_X$$

and

$$-F(x) = F(-x) \leq \|f\|_M \|x\|_X \quad \forall x \in X,$$

which leads to

$$|F(x)| \leq \|f\|_M \|x\|_X \Rightarrow \sup_{x \in X, \|x\| \leq 1} |F(x)| \leq \|f\|_M.$$

But since $\sup_{x \in X, \|x\| \leq 1} |F(x)| \geq \sup_{x \in M, \|x\| \leq 1} |F(x)| = \|f\|_M$, we actually have equality above. Since F is bounded, it is also continuous.

Corollary 2. Let $x_0 \in X$, a normed linear space. Then, there exists a nonzero bounded linear functional F on X such that

$$F(x_0) = \|F\| \|x_0\|.$$

The converse of this last result does not generally hold; that is, given $F \in X^*$, we may not be able to find $x \in X$ such that $F(x) = \|F\| \|x\|$. See, for example, Example 1 on page 113 of the text by Luenberger. We will see (in class) that for some (but not all) Banach spaces this converse indeed holds.

\[\Diamond \quad \Diamond \quad \Diamond\]