Quasi-Random Properties of Expanders
Today

- Why PRGs?
- The use of PRGs in randomized algorithms.
- Random walks on expanders and Impagliazzo-Zuckerman PRG.
- Quasi-random properties of expanders, expander mixing lemma.
Why Study PRGs?

- Pseudo-random number generators take a seed which is presumably random and generate a long string of random bits that are supposed to act random.

- Why would we want a PRG?
 - Random bits are scarce (e.g., low-order bits of temperature of the processor in a computer is random, but not too many such random bits). Randomized algorithms often need many random bits.
 - Re-run an algorithm for debugging, convenient to use same set of random bits. Can only do that by re-running the PRG with the same seed, but not with truly random bits.
What Type of PRGs?

- Standard PRGs are terrible (e.g. `rand` in C). Often produce bits that behave much differently than truly random bits.

- One can use cryptography to produce such bits, but much slower
Repeating an Experiment

- Consider wanting to run the same randomized algorithm many times.
- Let A be the algorithm, which returns “yes”/“no” and is correct 99% of the time (correctness function of the random bits).
- Boost accuracy by running A t times and taking majority vote.
- Use truly random bits the first time we run A and then with the PRG we will see that every new time we only need 9 random bits.
- If we run t times, probability that majority answer is wrong is exponential in t.
The Random Walk Generator

- Let r be the number of bits out algorithm needs for each run: space of random bits is $\{0,1\}^r$
- Let $X \subseteq \{0,1\}^r$ be the settings of random bits on which algorithm gives wrong answer
- Let $Y = \{0,1\}^r \setminus X$ be the settings on which algorithm gives the correct answer
The Random Walk Generator: Expander Graphs

- Our PRG will use a random walk on a d-regular G with vertex set $\{0,1\}^r$, and degree $d = \text{constant}$.

- We want G to be an expander in the following sense: If A_G is G’s adjacency matrix and $d = \alpha_1 > \alpha_2 \geq \cdots \geq \alpha_n$ its eigenvalues then we require that
 \[
 \frac{|\alpha_i|}{d} \leq \frac{1}{10}
 \]

Such graphs exist with $d=400$ (next lectures)
The Random Walk Generator

• For the first run of algorithm, we require r truly random bits. Treat those bits as vertex of expander G.

• For each successive run, we choose a random neighbor of the present vertex and feed the corresponding bits to our algorithm.

• I.e, choose random i between 1 and 400 and move to the i-th neighbor of present vertex. Need $\log(400) \sim 9$ random bits.

• Need concise description, don’t want to store the whole graph (e.g. see hypercube)
The Random Walk Generator

\[G \quad v_0 \in \{0,1\}^r \]

\[t=0 \]
The Random Walk Generator

\[G \]

\[v_1 \in N(v_0) \]

\[t=1 \]
The Random Walk Generator

\[G \]

\[v_2 \in N(v_1) \]
The Random Walk Generator

\[G \]

\[v_3 \in N(v_2) \]
The Random Walk Generator

G
Assume we will run the algorithm \(t+1 \) times. Start with truly random vertex \(u \) and take \(t \) random walk steps.

Recall that \(X \) is the set of vertices on which the algorithm is not correct, we assume that \(|X| \leq \frac{2r}{100}\) (algorithm correct 99% of time).

If at the end, we report the majority of the \(t+1 \) runs of algorithm, then we will return the correct answer as along as the random walk is inside \(X \) less than half the time.
We will show that
\[\Pr[|S| > t/2] \leq \left(\frac{2}{\sqrt{5}}\right)^{t+1} \]
Formalizing the Problem

- Initial distribution is uniform (start with truly random string): \(p_0 = 1/n \)
- Let \(\chi_X \) and \(\chi_Y \) the characteristic vectors of \(X \) and \(Y \).
- Let \(D_X = \text{diag}(X) \) and \(D_Y = \text{diag}(Y) \)
- Let \(W = \frac{1}{d} A \) (not lazy) random walk matrix, with eigenvalues \(\omega_1, \ldots, \omega_n \) such that \(\omega_i \leq \frac{1}{10} \) by the expansion requirement.
- For \(|X| \leq \frac{2^r}{100} \),
 \(S = \{i: v_i \in X\} \) (time steps that the walk is in \(X \))
 we want to show \(\Pr[|S| > t/2] \leq \left(\frac{2}{\sqrt{5}}\right)^{t+1} \)
Expander Graphs

- Generally, we defined expander graphs to be d-regular graphs whose adjacency matrix eigenvalues satisfy
 \[|\alpha_i| \leq \epsilon d \]
 for $i > 1$, and some small ϵ.
Quasi-Random Properties of Expander Graphs

- Expanders act like random graphs in many ways.
- We saw that with random walk on expander, we can boost the error probability like we could do with random walk on a random graph (or truly random stings, Chernoff bound)
- In fact, a random d-regular graph is expander w.h.p.
Quasi-Random Properties of Expander Graphs

- All sets of vertices in expander graph act like random sets of vertices.
- To see that, consider creating a random set $S \subseteq V$ by including every vertex in S independently w.p. a.
- For every edge (u,v) the probability that each end point is in S is a. Probability that both end points are in S is a^2.
- So, we expect a^2 fraction of the edges to go between vertices in S.
- We show that this is true for all sufficiently large sets in an expander.
Quasi-Random Properties of Expander Graphs: EML

- We show something stronger (expander mixing lemma), for two sets S and T.
- Include each vertex in S w.p. a and each vertex in T w.p. b. We allow vertices to belong to both S and T. We expect that for ab fraction of ordered pairs (u,v) we have u in S and v in T.
Expander Mixing Lemma

- For graph $G=(V,E)$ define the ordered set of pairs
 \[E(S,T) = \{(u,v): u \in S, v \in T, (u,v) \in E\} \]

- When S, T disjoint $|E(S,T)|$ is the number of edges between S and T.
- $|E(S,S)|$ counts every edge inside S twice.
Expander Mixing Lemma, simplified

- **Theorem** (Beigel, Margulis, Spielman ‘93, Alon, Chung ’88)

 Let $G=(V,E)$ a d-regular graph with $|\alpha_i| \leq (\epsilon - \frac{1}{n-1})d$, for $i>1$. Then, for every $S \subseteq V$, $T \subseteq V$ with $|S|=an$, $|T|=bn$

 $$\left| \|E(S,T)\| - d \frac{|S||T|}{n} \right| \leq \epsilon d \sqrt{|S||T|} \Rightarrow$$

 $$\left| \|E(S,T)\| - dabn \right| \leq \epsilon d n \sqrt{ab}$$