Problem 1

(30 pts.) Consider the following two definitions of log-space counting problems. A function \(f : \{0, 1\}^* \to \mathbb{N} \) is in \#L_1 if there is a non-deterministic Turing machine \(M_f \) that on input \(x \) of length \(n \) uses \(O(\log n) \) space and is such that the number of accepting paths of \(M_f(x) \) equals \(f(x) \). A function \(f : \{0, 1\}^* \to \mathbb{N} \) is in \#L_2 if there is a relation \(R(.,.) \) that is decidable in log-space and a polynomial \(p \) such that if \(R(x,y) \) then \(|y| \leq p(|x|) \) and such that \(f(x) \) equals \(|y : R(x,y)| \). Prove that all functions in \#L_1 can be computed in polynomial time, while \#L_2 equals \#P.

Problem 2

(30 pts.) Alice and Bob share an arbitrarily long common string \(S \). Alice is given as input a random bit \(x_A \) and Bob a random bit \(x_B \). Without communicating with each other, Alice and Bob wish to output bits \(a \) and \(b \) respectively such that \(x_A \land x_B = a \oplus b \). Prove that any protocol that Alice and Bob follow has success probability at most \(3/4 \).

Problem 3

Recall that if \(G \) is a \(d \)-regular graph with transition matrix \(M \), then \(G^k \) is the \(d^k \) -regular graph with transition matrix \(M^k \) that has one edge for each path of length \(k \) in \(G \) (with repetitions).

• (30 pts.) Prove that if \(h(G) \geq \epsilon \), then there is a \(k = k(\epsilon) \) that depends only on \(\epsilon \) and not on the size of \(G \) such that \(h(G^k) \geq 1/10 \).

• (10 pts.) Provide a counterexample to the following statement:

\[
 h(G^2) \geq \min\{1/10, 1.01 \times h(G)\}
\]

[Note: the statement may be true (its an open question) if \(G^2 \) is replaced by \(G^3 \).]