Solution to question 4(b)

March 14, 2016

Problem 1

Prove that if \(P = NP \) then there is a problem in \(EXP \) that requires circuits of super-polynomial size.

Proof.

Lemma 1. \(EXP \subseteq SIZE(n^{O(1)}) \) implies \(EXP \subseteq \Sigma_2 \).

Proof. (Of Lemma) Let \(L \in EXP \) and let \(M \) be the Turing machine that solves \(L \) in time \(\leq 2^{p(n)} \) on inputs of length \(n \). Fix a representation of the configurations of \(M \) on some \(n \)-bit input \(x \). Each configuration can be written with \(O(2^{p(n)}) \) bits.

There is a machine \(M' \) that, given a string \(x \) of length \(n \), and integers \(t \leq 2^{p(n)} \) and \(i \leq O(2^{p(n)}) \), outputs the \(i \)-th bit of the configuration reached by \(M(x) \) after \(t \) steps. Moreover, \(M' \) is an \(EXP \) machine so by assumption there is a family of polynomial size circuits that simulate \(M' \). Let \(q(n) \) be a polynomial upper bound to the size of these circuits. The \(\Sigma_2 \) verifier of \(M \), on input \(x \), will guess a circuit \(C \) of size \(q(n) \), then it will verify that for every \(i \) and \(t \), the value of \(C(x,t,i) \) is consistent with the (constant number of) values \(C(x,t-1,..) \) that it depends on. Finally, it will accept if and only if \(C \) predicts that after \(2^{p(n)} \) steps \(M(x) \) accepts.

\[x \in L \text{ iff } \exists C, |C| \leq q(|x|) \text{ such that } \forall t \leq 2^{p(|x|)} \text{ and } \forall i \leq O(2^{p(x)}) \text{, } C(x,t,i) \text{ is consistent with } C(x,t-1,..) \text{ and } C(x,2^{p(|x|)},..) \text{ describes an accepting configuration} \]

The proof of the homework problem follows by the time hierarchy theorem where we are guaranteed that \(EXP \neq P \) and the conclusion of part (1) of the question where if \(P = NP \) then \(P = \Sigma_2 \).