Homework 5 Solution

$$
4.8 \quad 0=-T_{n}+P_{r v}
$$

(a) $0=-p_{s v}+0.7-\frac{1}{105}\left(\frac{376.9}{2 \pi 10}-1\right)$

$$
\begin{aligned}
& P_{s v}=0.704834 \\
& T_{m}=0.704834
\end{aligned}
$$

(b)

$$
\begin{aligned}
& 0.2 \frac{d P_{p}}{d t}=-P_{s v}+0.7-\frac{1}{.05}\left(\frac{376.8}{2 \pi 60}-1\right) \\
& P_{s v}(0)=0.704834 \\
& 0.4 \frac{d T_{m}}{d t}=-T_{n}+P_{s v} \quad T_{m}(0)=0.704834 \\
& P_{s v}=A_{1} e^{-5 t}+B_{1} \quad B_{1}=P_{s v}=0.71014 \\
& 0.704834=A_{1}+0.71014 \quad A_{1}=-0.0053 \\
& P_{s v}=-.0053 e^{-5 t}+0.71014 \\
& \frac{d T_{m}}{d t}=2.5\left[-T_{m}-10053 e^{-5 t}+.71014\right] \quad T_{m}(0)=0.70483 \% \\
& T_{m}=A_{2} e^{-5 t}+A_{3} e^{-2.5 t}+B_{2} \\
& B_{2}=T_{m}=0.71014
\end{aligned}
$$

$$
\begin{gathered}
\text { Im }(0): 0.704834=A_{2}+A_{3}+0.71014 \\
A_{3}=-A_{2}-0.005306 \\
\frac{d T_{m}}{d+}=0=-5 A_{2}-2.5 A_{3} \\
0=-5 A_{2}-2.5\left(-A_{2}-0.005306\right) \\
2.5 A_{2}=0.013265 \quad A_{2}=0.005306 \\
T_{m}=0.005306 e^{-5 t}-0.010612 e^{-2.5 t}+0.71014
\end{gathered}
$$

2. Calculate expected final trequencywith outage of generator al bus 54. All the generators in the system have a governor with a 5% droop Generation loss be to the outage: $106 . \mathrm{d} \mathrm{MW}$ Total MVA at tho remaining generators: $40+180+180+250+160+57+85+190=110 \mathrm{~min} / \mathrm{h}$

$$
\begin{aligned}
& \therefore \Delta f=-\frac{R * \Delta P_{\text {gen, MW }}}{\sum_{\text {Gingered }} S_{i, \text { MoA }}}=-\frac{0.05 \times 106.4}{1102}=-0.004813 \text { pau. } \\
& =-0.088184 \mathrm{~Hz} \\
& \therefore \text { Final frequacy }=60-\Delta f=59.91 \mathrm{~Hz}
\end{aligned}
$$

3. Calculate the initial value o $P_{\text {ref. }} \quad P_{\text {mech }}=1.0$

$$
\begin{aligned}
& V_{1} \rightarrow \frac{1+s T_{r}}{r \operatorname{Trs}} \rightarrow V_{2}: \quad V_{1}=0 \\
& -\Delta \omega+P_{\text {ref }}-R \cdot V_{2}=V_{1}
\end{aligned}
$$

Since $\Delta \omega=0, R=0.04$, and $V_{1}=0$

$$
\begin{gather*}
P_{\text {ret }}=R \cdot V_{2}=0.04 V_{2} \tag{1}\\
V_{2}=V_{3} \rightarrow(2) \\
-\left(\frac{V_{4}}{V_{3}}\right)^{-}+H_{\text {dam }}=0 \\
\left(\frac{V_{4}}{V_{3}}\right)^{2}=H_{\text {dam }}=I \\
\therefore V_{4}=V_{3} \rightarrow(3)
\end{gather*}
$$

$$
\begin{gathered}
\left(V_{4}-q N L\right) \times A_{t}=P_{\text {mech }} \\
\left(V_{4}-0.05\right) \times 1.2=1.0 \\
\therefore V_{4}=0.05+\frac{1}{1.2}=0.8833
\end{gathered}
$$

\therefore from © and (3) $V_{2}=V_{3}=V_{4}=0 \mathrm{di}_{3}$
\therefore From $2, P_{\text {ref }}=0.04 \cdot V_{2}=0.0353$

Problem 4

Problem 5

