1. [MSE of linear equalizers]
The MSE for the k-th symbol when a linear equalizer c_k is used was defined in class to be:

$$MSE_k = E \left[|c_k^\dagger Z - s_{m_k}|^2 \right]$$

Using the fact that

$$Z = h_k s_{m_k} + \sum_{j \neq k} h_j s_{m_j} + W$$

show that

$$MSE_k = E_s |c_k^\dagger h_k - 1|^2 + E_s \sum_{j \neq k} |c_k^\dagger h_j|^2 + N_0 \|c_k\|^2$$

2. [Minimum MSE]
Consider the MMSE equalizer $c_{k,MMSE} = \mathcal{E}_s (\mathcal{E}_s H H^\dagger + N_0 I)^{-1} h_k$. Show that MSE achieved by this equalizer (which is the minimum MSE) is given by:

$$MMSE_k = \mathcal{E}_s - \mathcal{E}_s^2 \frac{h_k^\dagger}{h_k^\dagger (\mathcal{E}_s H H^\dagger + N_0 I)^{-1} h_k}$$

3. [MMSE equalizer as SNR goes to infinity]
As we discussed in class, the MMSE equalizer becomes ill-conditioned if we set $N_0 = 0$. Interestingly, however, we can still show that the MMSE equalizer converges to the ZF equalizer in limit as $N_0 \to 0$.

(a) Show that MSE_k for $c_{k,ZF}$ is given by:

$$MSE_k(c_{k,ZF}) = N_0 \|c_{k,ZF}\|^2.$$

(b) Using part (a) argue that, for a fixed \mathcal{E}_s, MSE_k for $c_{k,MMSE}$ satisfies:

$$\lim_{N_0 \to 0} MSE_k(c_{k,MMSE}) = 0.$$

(c) Now use the results of part (b) and Problem 2 to conclude that the MMSE equalizer indeed converges to the ZF solution as $N_0 \to 0$, for fixed \mathcal{E}_s.

4. [MMSE equalizer maximizes SINR]
We showed in class that the SINR for the k-th symbol when a linear equalizer c_k is used is given by:

$$SINR_k = \frac{\mathcal{E}_s |c_k^\dagger h_k|^2}{\mathcal{E}_s \sum_{j \neq k} |c_k^\dagger h_j|^2 + N_0 \|c_k\|^2}$$

Using the result of Problem 2, show that $c_{k,MMSE}$ maximizes $SINR_k$.

Hint: Consider the problem of maximizing $SINR_k$ subject to $c_k^\dagger h_k = \alpha$, and show that the achieved maximum is independent of α.
5. **[Maximum SINR and Minimum MSE]**
 Show that the maximum value of SINR is given by
 \[
 \text{SINR}_{k,\text{max}} = \frac{E_s}{\text{MMSE}_k} - 1
 \]

6. **[True or False]**
 Determine if the following statements are True or False. You need to provide a brief justification for
 your answer to get credit.

 (a) If the mobile speed is 72 km/hr, the carrier frequency is 900 MHz, and symbol rate for communication
 is 10 symbols a second, then the mobile experiences slow fading.

 (b) In wireless communication, if the speed of the mobile is doubled the delay spread is also doubled.

 (c) A wireless channel with \(\tau_{ds} = 10^{-4} \) seconds and \(f_{\text{max}} = 100 \) Hz operating with a bandwidth
 of 1.25 MHz is a flat fading channel.

 (d) For a fixed \(\gamma \), \(P_b \) for binary DPSK signaling over a slow flat fading channel is always larger than
 \(P_b \) without fading, irrespective of the distribution of the fading.

7. **[Useful Result]**
 Show that
 \[
 \int_0^\infty Q(\sqrt{x}) \frac{e^{-x/\gamma}}{\gamma} dx = \frac{1}{2} \left(1 - \sqrt{\frac{\gamma}{2 + \gamma}} \right).
 \]
 Hint: Start with:
 \[
 \int_0^\infty Q(\sqrt{x}) \frac{e^{-x/\gamma}}{\gamma} dx = \int_0^\infty \int_{\pi}^{\infty} \frac{e^{-t^2/2}}{2\pi} \frac{e^{-x/\gamma}}{\gamma} dt \, dx = \int_0^\infty \int_{\pi}^{\infty} \frac{e^{-t^2/2}}{2\pi} \frac{e^{-x/\gamma}}{\gamma} dx \, dt
 \]
 and use the fact that the Gaussian pdf integrates to 1 to conclude the result.

You do not need to turn in the solutions to Problems 8-10. I’ll give you the solutions to these next Thursday when you turn in the solutions to Problems 1-7.

8. **[MPSK Signaling in Rayleigh Fading]**
 For MPSK signaling,
 \[
 P_e(\gamma_s) = \frac{1}{\pi} \int_0^{(M-1)\pi/M} \exp \left[-\frac{\gamma_s \sin^2(\pi/M)}{\sin^2 \theta} \right] d\theta.
 \]
 Using this expression show that the average symbol error probability \(\overline{P}_e \) for MPSK signaling in Rayleigh
 fading is given in closed form by
 \[
 \overline{P}_e = \left(1 - \frac{1}{M} \right) - \frac{1}{\sqrt{1 + a^2}} \left[\frac{1}{2} + \frac{1}{\pi} \tan^{-1} \left(\frac{\cot \pi/M}{\sqrt{1 + a^2}} \right) \right],
 \]
 where \(a^2 = \frac{1}{\tau_s \sin^2 \pi/M} \).
 Hint: You may need to use the following integral
 \[
 \int_{\theta_1}^{\theta_2} \frac{1}{\cosec^2 \theta + a^2} d\theta = \frac{1}{a^2} \left[\frac{1}{\sqrt{1 + a^2}} \tan^{-1} \left(\frac{\cot \theta}{\sqrt{1 + a^2}} \right) - \left(\frac{\pi}{2} - \theta \right) \right]_{\theta_1}^{\theta_2} \text{ for } 0 \leq \theta_1 \leq \theta_2 \leq \pi/2.
 \]

9. **[Diversity]**
 Consider BPSK with channel gain \(a \), i.e., the received signal is
 \[
 r(t) = \pm a \sqrt{E} g(t) + w(t), \quad 0 \leq t \leq T,
 \]
 where \(\{w(t)\} \) is a zero-mean complex WGN process with PSD \(N_0 \), \(g(t) \) is a unit energy signal, and the
 channel gain \(a \) is random with probability mass function
 \[
 P\{a = 0\} = 0.1 \quad \text{and} \quad P\{a = 2\} = 0.9.
 \]
(a) Determine the average probability of error P_e for MPE detection.
(b) What value does P_e approach as E/N_0 approaches infinity?
(c) Suppose the same signal is transmitted on two statistically independent channels with gains a_1 and a_2, where
$$P\{a_1 = 0\} = P\{a_2 = 0\} = 0.1 \quad \text{and} \quad P\{a_1 = 2\} = P\{a_2 = 2\} = 0.9.$$
The additive noises on the two channels are also independent and identically distributed. The demodulator employs a matched filter for each channel and adds the two filter outputs to form the decision variable (which is compared to 0 for decision-making). Determine P_e in this case.
(d) For the case in part (c), what value does P_e approach when E/N_0 approaches infinity?

10. **Optimality of maximal-ratio combining**
Consider BPSK signaling on an L-th order diversity channel. Each channel introduces a fixed attenuation and phase shift so that the received signal at the output of the ℓ-th channel is:
$$r_\ell(t) = \pm \alpha_\ell e^{j\phi_\ell} \sqrt{E} g_\ell(t) + w_\ell(t)$$
where the processes $w_\ell(t)$ are independent complex WGN processes with PSD N_0.
The receiver uses the decision statistic
$$R = \sum_{\ell=1}^L \beta_\ell \langle r_\ell, g_\ell \rangle$$
where the $\{\beta_\ell\}$ are complex weighting factors to be determined. A decision in favor of $+1$ ("symbol 0") is made if $r_\ell > 0$ and -1 ("symbol 0") otherwise.
(a) Determine the p.d.f. of R when $+1$ is transmitted.
(b) Show that the probability of bit error P_b is given by:
$$P_b = Q \left(\sqrt{\frac{2E}{N_0}} \sum_{\ell=1}^L \frac{\text{Re}\{\beta_\ell \alpha_\ell e^{j\phi_\ell}\}}{\sqrt{\sum_{\ell=1}^L |\beta_\ell|^2}} \right).$$
(c) Determine the values of $\{\beta_\ell\}$ that minimize P_b.
Hint: Use the Cauchy-Schwarz inequality