EXAM 1: 7:00–8:30 PM (50 points total)

1. [Simple Hypothesis Testing (20 pts)]
 Consider the binary hypothesis testing problem with
 \[p_1(y) = \frac{1}{2} e^{-\frac{y^2}{2}} \mathbb{1}_{y \geq 0}, \quad p_0(y) = e^{-y} \mathbb{1}_{y \geq 0} \]
 (a) Find a Bayes rule for uniform costs and equal priors.
 (b) Find the Bayes risk for the Bayes rule of part (a)
 (c) Find a Neyman-Pearson rule for level \(\alpha \), for \(\alpha \in (0, 1) \).
 (d) Find the probability of detection as a function of \(\alpha \) for the N-P rule of part (c).
 (e) Find a minimax rule for uniform costs. (You need to solve a quadratic equation for the threshold.)
 (f) Find the minimax risk for the minimax rule of part (e).

2. [Composite Hypothesis Testing (15 points)]
 Consider the hypothesis testing problem:
 \[H_0 : Y = Z \]
 \[H_1 : Y = s(\theta) + Z \]
 where \(\theta \) is a deterministic but unknown parameter that takes values in the set \(\{1, 2\} \), \(Z \sim \mathcal{N}(0, 1) \), and
 \[s(1) = \begin{bmatrix} 1 \\ 0 \\ -1 \\ 0 \end{bmatrix}, \quad s(2) = \begin{bmatrix} 0 \\ 1 \\ 0 \\ -1 \end{bmatrix}. \]
 (a) Is there a UMP test between \(H_0 \) and \(H_1 \)? If so, find it (for a level of \(\alpha \)). If not, explain why not.
 (b) Find an \(\alpha \)-level GLRT for testing between \(H_0 \) and \(H_1 \).
 (c) Argue that the probability of detection for the GLRT of part (b) is not a function of \(\theta \), and then find the probability of detection as a function of \(\alpha \).

3. [Shorts (15 points)]
 (a) Suppose the minimum Bayes risk function for uniform costs for a binary hypothesis testing problem is given by:
 \[V(\pi_0) = \begin{cases} \pi_0^2 & \text{if } \pi_0 \in [0, 0.2) \\ \pi_0 + 0.1 & \text{if } \pi_0 \in [0.2, 0.5) \\ \frac{2(1-\pi_0)}{3} & \text{if } \pi_0 \in [0.5, 1] \end{cases} \]
 Find the threshold and randomization constant for the minimax LRT, and the corresponding minimax risk.
 (b) Consider testing between \(H_0 : Y = Z \) and \(H_1 : Y = s + Z \), where \(Z \sim \mathcal{N}(0, 1) \) and \(s \) is deterministic signal. We wish to design a linear detector with statistic \(T(y) = \mu^\top y \) for this problem using the deflection criterion. Find a value of \(\mu \) that maximizes the deflection.
 (c) Consider the problem of sequentially testing between the distributions
 \[p_1(y_k) = \begin{cases} \frac{2}{3} & \text{if } y_k = 1 \\ \frac{1}{3} & \text{if } y_k = 0 \end{cases}, \quad p_0(y_k) = \begin{cases} \frac{1}{3} & \text{if } y_k = 1 \\ \frac{2}{3} & \text{if } y_k = 0 \end{cases} \]
 using an SPRT with thresholds \(a = -10 \ln 2 \) and \(b = 10 \ln 2 \) on the log-likelihood ratio.
 Find the error probabilities \(P_F \) and \(P_M \).