1. **Chernoff and Bhattacharya Bounds**
 Consider the binary hypothesis testing problem with
 \[p_0(y) = \frac{1}{2}e^{-|y|} \quad \text{and} \quad p_1(y) = e^{-2|y|} \]
 Assume equal priors.
 (a) Find \(P_e \) for Bayes rule.
 (b) Find the Bhattacharya bound on \(P_e \).
 (c) Find the Chernoff bound on \(P_e \).

2. **Chernoff Information and K-L Divergence**
 Recall that the Chernoff information for \(p_0 \) and \(p_1 \) is given by
 \[C(p_0, p_1) \triangleq \max_{u \in [0,1]} - \ln \int_Y p_0^{1-u}(y)p_1^u(y)d\mu(y) \]
 Now define the “geometric mixture” of \(p_0 \) and \(p_1 \) by:
 \[p_u(y) \triangleq \frac{p_0^{1-u}(y)p_1^u(y)}{\int_Y p_0^{1-u}(y)p_1^u(y)d\mu(y)} \]
 Show that the optimizing value of \(u \) in definition of \(C(p_0, p_1) \) satisfies the equation:
 \[C(p_0, p_1) = D(p_u \| p_0) = D(p_u \| p_1) \]
 Hint: You may want to use the fact that \(p_u(y) \) can be written as:
 \[p_u(y) = \frac{p_0(y) L(y)^u}{E[L(Y)^u]} \]

3. **Slight Generalization of Cramer’s Theorem**
 Let \(X_1, X_2, \ldots, \) be i.i.d. with mean \(\mathbb{E}[X] \), and let \(S_n = \sum_{k=1}^{n} X_k \). Then, for \(a > \mathbb{E}[X] \), we know from class that
 \[\Pr\{S_n \geq na\} \leq \exp(-n\Lambda_X(a)) \]
 and that, given \(\epsilon > 0 \), there exists \(n_\epsilon \) such that
 \[\Pr\{S_n \geq na\} \geq \exp(-n(\Lambda_X(a) + \epsilon)) \quad \text{for all} \quad n > n_\epsilon. \]
 These two bounds establish Cramér’s Theorem. Now use these bounds and the continuity of \(\Lambda_X \) to show the following generalization of this result. Suppose \(a_n \to a \) as \(n \to \infty \) and \(a > \mathbb{E}[X] \), then
 \[\lim_{n \to \infty} \frac{1}{n} \ln \Pr\{S_n \geq na_n\} = -\Lambda_X(a) \]

4. **Gaussian – I**
 Consider the detection problem where the observations, \(\{Y_k, k \geq 1\} \) are i.i.d. \(N(\mu_j, \sigma^2) \) random variables under \(H_j, j = 0, 1. \)
(a) Evaluate the cumulant generating function \(\kappa_0(u) \).
(b) Use \(\kappa_0(u) \) to find \(D(p_0 \| p_1) \) and \(D(p_1 \| p_0) \).
(c) Find the rate functions \(\Lambda_0(\tau) \) and \(\Lambda_1(\tau) \).
(d) Find the Chernoff information \(C(p_0, p_1) \).
(e) Solve the Hoeffding problem when the constraint on the false alarm exponent is equal to \(\gamma \), for \(\gamma \in (0, D(p_1 \| p_0)) \).

5. [Gaussian - II]
Repeat parts (a)-(d) of Problem 4 for the case where the observations, \(\{Y_k, k \geq 1\} \) are i.i.d. \(\mathcal{N}(0, \sigma_j^2) \) random variables under \(H_j, j = 0, 1 \).