Chapter Eight

INTEGRATION FORMULAS

Copyright @ I. Hajj 2016 All rights reserved
Transient Analysis

Linear and nonlinear resistive-inductive-capacitive-memristive (RLCM) circuits and systems
Differential and Algebraic-Differential Equations

\[\dot{x} = f(x, t), \quad x(t_0) = x_0 \]

\[f(x, \dot{x}, t) = 0, \quad x(t_0) = x_0 \]
Initial-Value Problem

• Given

\[\dot{x} = f(x,t), \quad x(t_0) = x_0 \]

• Assume **unique solution** for every initial condition: No two trajectories intersect

![Tangent field](image)

Figure 9.2: Tangent field \[\dot{x} = f(x, t) \]
Theorem: Given $\frac{dx}{dt} = f(x,t)$, if $f(x,t)$ satisfies Lipschitz conditions, then a unique solution exists in the interval $t \in [0, \infty)$ for any initial condition $x(0) = x_0$

Lipschitz condition:

$$||f(x,t) - f(y,t)|| \leq L(t)||x-y||$$

for all $t \in [0, \infty)$ and all $x, y \in \mathbb{R}^n$ where L is a piecewise-continuous function in t.

- We’ll assume unique solutions for $\dot{x} = f(x, t)$ and $f(x, \dot{x}, t) = 0$ for any initial conditions.
Numerical Solution of $\dot{x} = f(x, t)$

Stable analytical solution and stable numerical solution
Numerical Solution of

\[\dot{x} = f(x, t) \]

Stable analytical solution, stable numerical solution (-), and unstable numerical solution (*)
Numerical Solution of \(\dot{x} = f(x, t) \)

Unstable analytical solution, stable numerical solution (-), and unstable numerical solution (*)
Numerical Solution of \[\dot{x} = f(x, t) \]

Taylor series expansion of \(x(t) \) at \(t_{n-1} \) (scalar case), assuming higher order derivatives exist; \(h = t_n - t_{n-1} \)

\[
x(t_n) = x(t_{n-1}) + h \frac{dx}{dt}(t_{n-1}) + \frac{1}{2!} h^2 \frac{d^2x}{dt^2}(t_{n-1}) + \frac{1}{3!} h^3 \frac{d^3x}{dt^3}(t_{n-1}) + \cdots
\]

\[
x(t_n) \simeq x(t_{n-1}) + h \frac{dx}{dt}(t_{n-1})
\]

Truncation Error:

\[
\frac{1}{2!} h^2 \frac{d^2x}{dt^2}(t_{n-1}) + \frac{1}{3!} h^3 \frac{d^3x}{dt^3}(t_{n-1}) + \cdots
\]
Numerical Solution of Forward Euler Formula (F.E.)

\[\dot{x} = f(x, t) \]

\[x_n = x_{n-1} + h\dot{x}_{n-1} \]

\[x_n = x_{n-1} + hf(x_{n-1}, t_{n-1}) \]

Local Truncation Error:

\[LTE \approx \frac{1}{2} h^2 \frac{d^2 x}{dt^2}(t_{n-1}) \]
Stability (and accuracy)

Test Equation: \[\dot{x} = \lambda x, \quad x(0) = x_0, \]
a scalar linear differential equation with zero input.

Exact solution: \[x(t) = x_0 e^{\lambda t}, \quad t \geq 0 \]

If \(\lambda < 0 \) (or if \(R_e\{\lambda \} < 0 \)), \(x(t) \to 0 \) as \(t \to \infty \) (stable)
If \(\lambda > 0 \) (or if \(R_e\{\lambda \} > 0 \)), \(x(t) \to \infty \) as \(t \to \infty \) (unstable)

Numerical solution using F.E.:

\[
x_n = x_{n-1} + h \dot{x}_{n-1} \\
= x_{n-1} + h \lambda x_{n-1} \\
= (1 + h\lambda) x_{n-1} \\
= (1 + h\lambda)^n x_0 \quad \text{Assuming constant } h
\]
• This means that if

\[|1 + h\lambda| < 1, \ x_n \to 0 \text{ as } n \to \infty \]

and if \[|1 + h\lambda| > 1, \ x_n \to \infty \text{ as } n \to \infty \]

\[\therefore \text{ If } \lambda < 0, \text{ need } |1 + h\lambda| < 1 \Rightarrow |h\lambda| < 2 \text{ or } h < \frac{2}{|\lambda|} \]

Suppose \(x = -10^6x \), then \(h < \frac{2}{|10^6|} \)

Note: If \(\lambda > 0 \) => need \(|1 + \lambda| > 1 \), which is true for all \(h > 0 \)
Consider another test equation:

\[\dot{x} = Ax \quad x(0) = x_0 \]

where A is a matrix of dimension greater than 1. Assume A to have distinct eigenvalues: \(A = T \Lambda T^{-1} \)

where \(\Lambda = \begin{bmatrix} \lambda_1 & & \\ & \lambda_2 & \\ & & \ddots \\ & & & \lambda_m \end{bmatrix} \)
\(\lambda_i \) are the eigenvalues of \(\mathbf{A} \) (real or complex)

(i) If \(\Re\{\lambda_i\} < 0 \), for all \(i = 1, \ldots, n \) then the system is absolutely stable.

(ii) If \(\Re\{\lambda_i\} = 0 \) for some \(i \) (i.e., \(\lambda_i \) on imaginary axis) and simple and all other eigenvalues in left half plane (lhp), then system is oscillatory.

(iii) If there are multiple eigenvalues on imaginary axis and/or if at least one eigenvalue in right half plane (rhp), \(\Re\{\lambda_j\} > 0 \) for some \(j \), then system is unstable.
Forward Euler Formula

\[x_n = x_{n-1} + h\dot{x}_{n-1} = x_{n-1} + hAx_{n-1} = (I + hA)x_{n-1} \]

\[= (I + hT\Lambda T^{-1})x_{n-1} = T(I + h\Lambda)T^{-1}x_{n-1} \]

\[= T(I + h\Lambda)T^{-1}T(I + h\Lambda)T^{-1}x_{n-2} \]

\[= T(I + h\Lambda)^nT^{-1}x_0 \]

\[x_n = T \begin{bmatrix} (1 + h\lambda_1)^n \\ (1 + h\lambda_2)^n \\ \vdots \\ (1 + h\lambda_m)^n \end{bmatrix} T^{-1}x_0 \]
If all $\Re\{\lambda_i\} < 0$, then $x(t) \to 0$ as $t \to \infty$ (absolutely stable)

In this case $x_n \to 0$ as $n \to \infty$ iff $|1 + h\lambda_i| < 1$ for all i

Let $\lambda_{\text{max}} = a + jb$, then $|1 + h\lambda_i| = |1 + ha + jhb| < 1$

$(1 + ha)^2 + (hb)^2 = 1$ represents a circle of radius 1 and centered at $(-1, 0)$:

If all $\Re\{\lambda_i\} < 0$, then $x(t) \to 0$ as $t \to \infty$ (absolutely stable)
If all $R_e\{\lambda_j\} < 0$, then $x(t) \to 0$ as $t \to \infty$ (absolutely stable)

Region of stability of F.E. in the $h\lambda,-$plane
F.E. Integration Formula

- Example: 2nd-order system: $\lambda = -1, -10^6$ (stiff system)
Forward Euler not suitable for stiff stable systems
Backward Euler Formula

- Taylor series expansion of $x(t)$ at t_n, assuming higher order derivatives exist.

\[
x(t_{n-1}) = x(t_n) - h \frac{dx}{dt}(t_n) + \frac{1}{2!} h^2 \frac{d^2x}{dt^2}(t_n) - \frac{1}{3!} h^3 \frac{d^3x}{dt^3}(t_n) + \cdots
\]

\[
x(t_{n-1}) \approx x(t_n) - h \frac{dx}{dt}(t_n)
\]

\[
x(t_n) \approx x(t_{n-1}) + h \frac{dx}{dt}(t_n)
\]

Truncation Error:

\[
LTE \approx \frac{1}{2} h^2 \frac{d^2x}{dt^2}(t_n)
\]
Backward Euler Formula (BE)

\[x_n = x_{n-1} + h \dot{x}_n \] (Implicit Formula)

Apply to \(\dot{x} = f(x, t) \), \(x(0) = x_0 \)

get

\[x_n = x_{n-1} + h f(x_n, t_n) \]

\[x_n - hf(x_n, t_n) = x_{n-1} \]

\[g(x_n) = x_{n-1} \]

Solve using Newton's Method.
Stability of BE formula

Consider test eqn. \(x = \lambda x \), \(x(0) = x_0 \)

\[
\begin{align*}
x_n &= x_{n-1} + h x_n = x_{n-1} + h \lambda x_n \\
(1 - h \lambda) x_n &= x_{n-1} \\
x_n &= \frac{1}{(1 - h \lambda)} x_{n-1} = \frac{1}{(1 - h \lambda)^n} x_0
\end{align*}
\]

If \(\lambda < 0 \) \(\Rightarrow x(t) = x_0 e^{\lambda t} \) and \(x(t) \rightarrow 0 \) as \(t \rightarrow \infty \)
(Absolutely stable)
Numerical Solution

\[x_n \to 0 \text{ as } n \to \infty \text{ iff } \frac{1}{|1 - h\lambda|} < 1 \]

or \[|1 - h\lambda| > 1 \]

which is true for all \(h > 0 \)
Consider \(\dot{x} = Ax, \ x(0) = x_0 \)

\[
A = T \Lambda T^{-1}
\]

\[
\Lambda = \begin{bmatrix}
\lambda_1 \\
\lambda_2 \\
\vdots \\
\lambda_m
\end{bmatrix}
\]

\[
(B.E.): \quad x_n = x_{n-1} + hAx_n
\]

\[
(I - hA) x_n = x_{n-1}
\]

\[
x_n = (I-hA)^{-1} x_{n-1}
\]

\[
x_n = [T(I - h \Lambda) T^{-1}]^{-1} x_{n-1}
\]

\[
x_n = T(I - h \Lambda)^{-1} x_0
\]
If $R_e \{ \lambda_i \} < 0$ for all i, then the system is absolutely stable and numerical solution generated by B. E. is absolutely stable for $h > 0$.

If $R_e \{ \lambda_i \} > 0$ for some i, the system is unstable and $x(t) \to \infty$ as $t \to \infty$.

For numerical solution $x_n \to \infty$ as $n \to \infty$.

\[\lambda_1 > 1 \text{ for at least one } \lambda_i, \text{ or } |1 - h \lambda_i| < 1 \]
Region of stability of B.E. in $h\lambda$-plane

$|1 - h \lambda_i| = |1 - ha - jhb| < 1$ is the region of instability. Boundary of the region is

$$(1-ha)^2 + (hb)^2 = 1$$

which is a circle centered at (+1,0) in the complex $h\lambda$-plane with radius 1.
Region of stability of B.E. in $h\lambda$-plane.

Stable for all $h > 0$ when all λ_i are in lhp (absolutely stable system)
Unstable when $h < 2/\lambda_{\text{min}}$
Remark: For an increasing transient (with decreasing slope) F.E. overshoots the actual solution, B.E. undershoots: Averaging Formula: Trapezoidal Rule
Trapezoidal Rule (T.R.)

\[x_n = x_{n-1} + \frac{h}{2} (x_{n-1} + x_n), \text{ Implicit, one-step formula} \]

\[\dot{x} = f(x, t) \]

\[x_n = x_{n-1} + \frac{h}{2} \left(f(x_{n-1}, t_{n-1}) + f(x_n, t_n) \right) \]

\[x_n - \frac{h}{2} f(x_n, t_n) = x_{n-1} + \frac{h}{2} f(x_{n-1}, t_{n-1}) \]

\[g(x_n) = y \text{ known} \]

Use Newton's Method to find \(x_n \)
To study stability properties of T.R. apply to a test example: \(\dot{x} = \lambda x \), \(x(0) = x_0 \)

\[
x_n = x_{n-1} + \frac{h}{2} \left(\lambda x_{n-1} + \lambda x_n \right)
\]

\[
\left(1 - \frac{h}{2} \lambda \right)x_n = x_{n-1} + \frac{h}{2} \lambda x_{n-1}
\]

\[
\left(1 - \frac{h\lambda}{2} \right)x_n = \left(1 + \frac{h\lambda}{2} \right)x_{n-1}
\]

\[
x_n = \frac{1 + \frac{h\lambda}{2}}{1 - \frac{h\lambda}{2}} x_{n-1}
\]

\[
= \frac{\left(1 + \frac{h\lambda}{2} \right)^n}{\left(1 - \frac{h\lambda}{2} \right)^n} x_0
\]
If $R_e\{\lambda\} < 0 \Rightarrow$ Stable System

We want

$$\left| \frac{1 + \frac{h\lambda}{2}}{1 - \frac{h\lambda}{2}} \right| < 1$$

Let $\lambda = a + jb, \ a < 0$

$$\frac{(1 - \frac{h|a|}{2})^2 + (\frac{hb}{2})^2}{(1 + \frac{h|a|}{2})^2 + (\frac{hb}{2})^2} < 1$$

True for all $h > 0$
If $\Re\{\lambda\} > 0 \Rightarrow \text{Unstable}$

Want \[
\frac{|1 + h\lambda/2|}{|1 - h\lambda/2|} > 1
\]

$\lambda = a + jb, a > 0$

\[
\frac{(1 + \frac{ha}{2})^2 + (\frac{hb}{2})^2}{(1 - \frac{ha}{2})^2 + (\frac{hb}{2})^2} > 1
\]

True for all $h > 0$
Region of Stability of TR

Stability of numerical solution obtained by T.R. matches the stability of the original system
Case of an Oscillator

\[C \frac{dv_C}{dt} = -i_L \]

\[L \frac{di_L}{dt} = v_C \]

\[\begin{bmatrix} \dot{v}_C \\ \dot{i}_L \end{bmatrix} = \begin{bmatrix} 0 & -\frac{1}{C} \\ \frac{1}{L} & 0 \end{bmatrix} \begin{bmatrix} v_C \\ i_L \end{bmatrix} \]
Eigenvalues:

\[
\det \begin{bmatrix}
\lambda & \frac{1}{C} \\
-\frac{1}{L} & \lambda \\
\end{bmatrix} \Rightarrow \lambda^2 - \frac{1}{LC} = 0
\]

\[
\lambda = \sqrt{-\frac{1}{LC}} = \pm j \frac{1}{\sqrt{LC}}
\]

freq = \frac{1}{\sqrt{LC}}

\lambda\text{-plane}

\star \quad \star

j \frac{1}{\sqrt{LC}}

\star \quad \star

-j \frac{1}{\sqrt{LC}}
F.E.
\[x_n = (1 + h\lambda)^n x_0 \]
\[
\left| 1 + jh \frac{1}{\sqrt{LC}} \right| = \left(1 + \frac{h^2}{LC} \right)^{1/2} > 1 \forall h
\]
Unstable, \(x_n \to \infty \) as \(n \to \infty \)

B.E.
\[x_n = \left| \frac{1}{(1-h\lambda)^n} \right| x_0 \]
\[
\left| 1 - j\frac{h}{\sqrt{LC}} \right| = \frac{1}{\left(1 + \frac{h^2}{LC} \right)^{1/2}} > 1 \quad \forall h > 0 \Rightarrow \text{stable}
\]
Stable, \(x_n \to 0 \) as \(n \to \infty \)

T.R.
\[x_n = \left(\frac{1 + \frac{h\lambda}{2}}{1 - \frac{h\lambda}{2}} \right)^n x_0 \]
\[
\left| \frac{1 + j\frac{h}{2\sqrt{LC}}}{1 - j\frac{h}{2\sqrt{LC}}} \right| = \left(\frac{1 + \frac{h^2}{4LC}}{1 + \frac{h^2}{4LC}} \right) = 1
\]
T.R Oscillates for any \(h > 0 \) same as the actual solution
One drawback of T.R.

For stiff systems, some $|\lambda|$'s are small (slow transients) and some $|\lambda|$'s are large (fast transients).

If $h\lambda$ becomes very large $h|\lambda| \rightarrow \infty$

\[x_n = \left(\frac{1 + h\lambda/2}{1 - h\lambda/2} \right)^n x_0 \]

\[\left(\frac{1 + h\lambda/2}{1 - h\lambda/2} \right)^n \xrightarrow{h\lambda \rightarrow \infty} (-1)^n \]
Solution oscillates (numerically) around x_0, i.e.,

$$x_n \to (-1)^n x_0$$

instead of going to zero.

In contrast, using B.E.

$$x_n = \frac{1}{(1-h\lambda)^n} x_0$$

as $h|\lambda| \to \infty$, $x_n \to 0$
There are many different methods for solving ODEs:

- Taylor Series
- Runge-Kutta
- Extrapolation
- Multi-Value
- Multi-step methods
Linear Multistep Formulas

Consider \(\dot{x} = f(x,t), \ x(0) = x_0 \)

\[
x_n = \sum_{i=1}^{k} \alpha_i x_{n-i} + h \sum_{i=0}^{k} \beta_i \dot{x}_{n-i}
\]

If \(\beta_0 = 0 \) => explicit, \(\beta_0 \neq 0 \) => implicit
Linear Multistep Formulas

- A linear multistep formula (lmtf) approximates the solution $x(t)$ locally in the interval $t_{n-k} < t < t_n$ by an interpolating polynomial

$$p(t) = a_p t^p + a_{p-1} t^{p-1} + \ldots + a_0$$

of order $p \leq 2k$ that satisfy the points x_{n-i} and its time derivatives f_{n-i}, $i=0,1,\ldots,k$.

- The formula should satisfy the basis functions

$$\{1, t, t^2, t^3, \ldots, t^p\}$$

because of linearity.
Another form:

\[
\sum_{i=0}^{k} (\alpha_i x_{n-i} + h \beta_i \dot{x}_{n-i}) = 0, \; \alpha_0 = -1, \; k = \# \text{ of steps}
\]
How to select α_i and β_i for a k-th step \textit{lmf}

1. Select a number $p \leq 2k$

2. Select a set of polynomial basis functions \{1, t, t^2, ..., t^p\}

3. Compute the coefficients of the \textit{lmf} such that the formula is exact for each of the basis functions. The formula will then be exact for any polynomial of order p because of linearity.

If $p < 2k$, some of the coefficients of the \textit{lmf} can be assigned arbitrary values.

\[
\sum_{i=0}^{k} (\alpha_i \cdot x_{n-i} + h \beta_i \cdot x_{n-i}) = 0, \quad \alpha_0 = -1
\]
Example

$k = 1$ (one-step formula)

$$\sum_{i=0}^{1} (\alpha_i x_{n-i} + h \beta_i \dot{x}_{n-i}) = 0, \quad \alpha_0 = -1$$

$$-x_n + \alpha_1 x_{n-1} + h (\beta_0 \dot{x}_n + \beta_1 \dot{x}_{n-1}) = 0$$

Order p can be 1 or 2
• Choose \(p = 1 \)
• Basis functions: \(\{1, t\} \)

\[
-x_n + \alpha_1 x_{n-1} + h (\beta_0 \dot{x}_n + \beta_1 \dot{x}_{n-1}) = 0
\]

• 1: \(-1 + \alpha_1 = 0 \Rightarrow \alpha_1 = 1\)
• t: \(-t_n + \alpha_1 t_{n-1} + h(\beta_0 + \beta_1) = 0\)
• Let \(t_{n-1} = 0\), then \(t_n = h\)
\[
\begin{align*}
\alpha_1 &= 1 \\
-1 + \beta_0 + \beta_1 &= 0
\end{align*}
\]

- Choose \(\beta_0 = 0 \Rightarrow \beta_1 = 1 \Rightarrow \text{explicit} \\
\begin{align*}
-x_n + x_{n-1} + h x_{n-1} &= 0 \quad \text{(F.E.)}
\end{align*}

- Choose \(\beta_1 = 0 \Rightarrow \beta_0 = 1 \Rightarrow \text{implicit} \\
\begin{align*}
-x_n + x_{n-1} + h x_n &= 0 \Rightarrow \quad \text{(B.E.)}
\end{align*}

- Choose \(\beta_0 = \mu \) , \(\beta_1 = 1 - \mu \) \\
\begin{align*}
-x_n + x_{n-1} + h \left(\mu x_n + (1 - \mu) x_{n-1} \right) &= 0,
\end{align*}

one-step 1st order formula (if \(\mu \neq 1/2 \)) \\
(If \(\mu = \frac{1}{2} \Rightarrow \text{T.R.} \))
• Choose $p = 2$

$$-x_n + \alpha_1 x_{n-1} + h (\beta_0 \dot{x}_n + \beta_1 \dot{x}_{n-1}) = 0$$

Basis functions: $\{1, t, t^2\}$

1: $-1 + \alpha_1 = 0 \Rightarrow \alpha_1 = 1$

t: $-t_n + \alpha_1 t_{n-1} + h (\beta_0 + \beta_1) = 0$

t2: $-t_n^2 + \alpha_1 t_{n-1}^2 + h (\beta_0 2t_{n-1} + \beta_1 2t_n) = 0$
1. $\alpha_1 = l$

2. $-h + 0 + h(\beta_0 + \beta_1) = 0$
 \[\beta_0 + \beta_1 = l\]

3. $-h^2 + \alpha_0 + h(\beta_0 0 + \beta_1 2h) = 0$
 \[-h^2 + 2\beta_1 h^2 = 0 \Rightarrow -l + 2\beta_1 = 0\]
 \[\beta_1 = l/2, \quad \beta_0 = l/2, \quad \alpha_1 = 1\]

\[-x_n + x_{n-1} + h \left(\frac{1}{2} x_n + \frac{1}{2} x_{n-1} \right) = 0 \text{ (Trapezoidal Rule order 2)}\]
Suppose $k = 2$ (2-step formula)

\[\sum_{i=0}^{2} \left(\alpha_i x_{n-i} + h \beta_i \dot{x}_{n-i} \right) = 0 \]

\[-x_n + \alpha_1 x_{n-1} + \alpha_2 x_{n-2} + h (\beta_0 \dot{x}_n + \beta_1 \dot{x}_{n-1} + \beta_2 \dot{x}_{n-2}) = 0\]
p ≤ 4, since k = 2

Basis function \{1, t, t^2, t^3, t^4\}

If p = 4, basis functions will generate five equations in five unknowns: \(\alpha_1, \alpha_2, \beta_0, \beta_1, \beta_2\), which are functions of \(h_1\) and \(h_2\). When \(h_1 = h_2\) (constant step size) the coefficients become constants.

If p < 4, some coefficients \((\alpha_1, \alpha_2, \beta_0, \beta_1, \beta_2)\) are chosen arbitrarily (usually zero)
Suppose $p = 3$ ($k = 2$)

Basis functions $\{1, t, t^2, t^3\}$

\[-x_n + \alpha_1 x_{n-1} + \alpha_2 x_{n-2} + h_1 (\beta_0 \dot{x}_n + \beta_1 \dot{x}_{n-1} + \beta_2 \dot{x}_{n-2}) = 0\]

1: $-1 + \alpha_1 + \alpha_2 = 0$

t: $-(h_1 + h_2) + \alpha_1(h_2) + 0 + h_1(\beta_0 + \beta_1 + \beta_2) = 0$

t2: $-(h_1 + h_2)^2 + \alpha_1(h_2)^2 + 0 + h_1(2\beta_0(h_1 + h_2) + 2\beta_1 h_2) = 0$

t3: $-(h_1 + h_2)^3 + \alpha_1(h_2)^3 + 0 + h_1(3\beta_0(h_1 + h_2)^2 + 3\beta_1 h_2^2) = 0$

Four equations in five unknowns.
Suppose $\alpha_1 = 0$ (p=3, k=2)

\[x_n = \alpha_2 x_{n-2} + h(\beta_0 \dot{x}_n + \beta_1 \dot{x}_{n-1} + \beta_2 \dot{x}_{n-2}) \]

Consider constant stepsize h. Put $t_{n-2} = 0$, then $t_{n-1} = h$, $t_n = 2h$

Basis functions $\{1, t, t^2, t^3\}$

\[
\begin{align*}
1 & : 1 = \alpha_2 \\
 t & : 2 = \beta_0 + \beta_1 + \beta_2 \\
 t^2 & : 4 = 4\beta_0 + 2\beta_1 \\
 t^3 & : 8 = 12\beta_0 + 3\beta_1
\end{align*}
\]

Solution: $\alpha_2 = 1$, $\beta_0 = 1/3$, $\beta_1 = 4/3$, $\beta_2 = 1/3$,

\[x_n = x_{n-2} + \frac{h}{3}(\dot{x}_n + 4\dot{x}_{n-1} + \dot{x}_{n-2}) \]

Simpson’s Rule
Accuracy (errors)

Two sources of errors

• Roundoff errors: due to finite precision of floating-point arithmetic

• Truncation (or discretization) error due to method used (remains even with infinite precision)
Truncation Error

Global Truncation Error (GTE): difference between the computed solution and the true solution determined by the initial condition at t_0 (difficult to measure).

Local Truncation Error (LTE):
Error committed in one step in the numerical solution process. LTE is used to control the time-step h (for accuracy).
actual solution starting at x_0

$|x(t_n) - x_n| \Rightarrow \text{GTE at } n$

actual solution starting at x_{n-1}
Local Truncation Error

• A linear \textit{k-step} formula of order \(p \) is derived on the assumption that the solution can be represented as a polynomial in \(t \) of order \(p \) that matches the values \(x_{n-i} \) \textit{and} its derivatives \(f_{n-i}, \ i = 1, \ldots, k \).

• Define

\[
L[x(t); h] = \sum_{i=0}^{k} [\alpha_i x(t_{n-i}) + h\beta_i \dot{x}(t_{n-i})]
\]
Local Truncation Error

- $L(1; h) = 0$
- $L(t; h) = 0$
- $L(t^p; h) = 0$
- $L(t^{p+1}; h) \neq 0$
Local Truncation Error

Expanding $x(t_{n-i})$ and $\dot{x}(t_{n-i})$ in Taylor series expansion about t_n

$$x(t_{n-i}) = \sum_{j=0}^{\infty} \frac{1}{j!} (t_{n-i} - t_n)^j x^{(j)}(t_n)$$

$$x^{(1)}(t_{n-i}) = \sum_{j=0}^{\infty} \frac{1}{j!} (t_{n-i} - t_n)^j x^{(j+1)}(t_n)$$

Put into

$$L[x(t); h] = \sum_{i=0}^{k} [\alpha_i x(t_{n-i}) + h \beta_i \dot{x}(t_{n-i})]$$
Local Truncation Error

Collect terms:

\[L[x(t); h] = C_0 x(t) + C_1 h x^{(1)}(t) + \cdots + C_j h^j x^{(j)}(t) + \cdots \]

\[C_0 = \alpha_0 + \alpha_1 + \alpha_2 + \cdots + \alpha_k \]

\[C_1 = \alpha_1 + 2\alpha_2 + \cdots + k\alpha_k - (\beta_0 + \beta_1 + \beta_2 + \cdots + \beta_k) \]

\[C_j = \frac{1}{j!} (\alpha_1 + 2^j \alpha_2 + \cdots + k^j \alpha_k) - \frac{1}{(j-1)!} (\beta_1 + 2^{j-1} \beta_2 + \cdots + k^{j-1} \beta_k) \]
Local Truncation Error

- \(L(1; h) = C_0 = 0 \)
- \(L(t; h) = C_1 h = 0 \)
- \(L(t^p; h) = p!C_p h^p = 0 \)
- \(L(t^{p+1}; h) = (p+1)!C_{p+1} h^{p+1} \neq 0 \)
Local Truncation Error

From Taylor series expansion:

\[L[x(t_n); h] = C_{p+1} h^{p+1} x^{(p+1)}(t_n) + O(h^{p+2}) = O(h^{p+1}) \]

\[\text{LTE} = C_{p+1} h^{p+1} x^{(p+1)}(t_n) \]

\(C_{p+1} \) is the Error Constant
Local Truncation Error

• Also: \(L(t^{p+1};h) = (p+1)!C_{p+1}h^{p+1} \)

• \(C_{p+1}h^{p+1} = \left[1/(p+1)!!\right] L(t^{p+1};h) \)

• LTE = \(C_{p+1}h^{p+1} x^{(p+1)}(t_n) \) (from Taylor series)

\[= \left[1/(p+1)!!\right] L(t^{p+1};h) x^{(p+1)}(t_n) \) (from putting \(t^{p+1} \) in formula)\]
Example: LTE of F.E.

\[
\text{F.E.} : \quad -x_n + x_{n-1} + h\dot{x}_{n-1} = 0
\]

\[
x(t_{n-1}) = x(t_n) - h\dot{x}(t_n) + \frac{h^2}{2} \ddot{x}(t_n) - \frac{h^3}{6} \dddot{x}(t_n) + \ldots
\]

\[
\dot{x}(t_{n-1}) = \dot{x}(t_n) - h\ddot{x}(t_n) + \frac{h^2}{2} \dddot{x}(t_n) - \frac{h^3}{6} \ddddot{x}(t_n) + \ldots
\]

\[
\text{LTE} = \quad -x(t_n) + (x(t_n) - h\dot{x}(t_n) + \frac{h^2}{2} \ddot{x}(t_n) + \ldots)
\]

\[
+ h\dot{x}(t_n) - h^2\ddot{x}(t_n) + \frac{h^3}{2} \dddot{x}(t_n) - \ldots)
\]

\[
= -\frac{h^2}{2} \dddot{x}(t_n)
\]
LTE of F.E.

Second method

• Put t^2 in formula:

$$L[t^2; h] = -t_n^2 + t_{n-1}^2 + 2ht_{n-1}$$

If $t_{n-1} = 0$, then $t_n = h$, and $L[t^2; h] = -h^2$.

$$LTE = -\frac{1}{2}h^2x^{(2)}(t_n)$$
LTE of B.E.

\[B.E.: \quad -x_n + x_{n-1} + h\dot{x}_n = 0 \]

1- Taylor Series:

\[LTE = -x(t_n) + (x(t_n) - h\dot{x}(t_n) + \frac{h^2}{2} \ddot{x}(t_n) - \ldots) \]

\[+ h\dot{x}(t_n) = \frac{h^2}{2} \ddot{x}(t_n) \]
LTE of B.E.

\[\text{B.E.: } -x_n + x_{n-1} + h\dot{x}_n = 0 \]

2- Put \(t^2 \) in formula:

\[L[t^2; h] = -t_n^2 + t_{n-1}^2 + 2ht_n \]

If \(t_{n-1} = 0 \), then \(t_n = h \), and \(L[t^2; h] = h^2 \).

\[\text{LTE} = \frac{1}{2}h^2x^{(2)}(t_n) \]
LTE of T.R.

\[T.R.: \quad -x_n + x_{n-1} + \frac{h}{2} (\dot{x}_n + \dot{x}_{n-1}) = 0 \]

\[|LTE| = -x(t_n) + (x(t_n) - h\dot{x}(t_n) + \frac{h^2}{2} \ddot{x}(t_n)) \]

\[-\frac{h^3}{6} \dddot{x}(t_n) + O(h^4) \cdots + \frac{h}{2} \dot{x}(t_n) + \frac{h}{2} (\dot{x}(t_n) - h\ddot{x}(t_n) + \frac{h^2}{2} \dddot{x}(t_n) + O(h^3)) \]

\[= -\frac{h^3}{6} \dddot{x}(t_n) + \frac{h^3}{4} \dddot{x}(t_n) + O(h^4) \]

\[= \frac{1}{12} h^3 \dddot{x}(t_n) \]
LTE of T.R.

T.R.: \(-x_n + x_{n-1} + \frac{h}{2}(\dot{x}_n + \dot{x}_{n-1}) = 0\)

2- Put \(t^3\) in formula:

\[
L[t^3; h] = -t_n^3 + t_{n-1}^3 + \frac{3}{2} h (t_n^2 + t_{n-1}^2)
\]

Let \(t_{n-1} = 0\), then \(t_n = h\), and \(L[t^3; h] = \frac{1}{2} h^3\).

\[
LTE = \frac{1}{3!} \frac{1}{2} h^3 x^{(3)}(t_n) = \frac{1}{12} h^3 x^{(3)}(t_n)
\]
How to estimate LTE in practice

Use **Finite Difference Interpolation**:

\[
\frac{dx_n}{dt} = \frac{x_n - x_{n-1}}{t_n - t_{n-1}} \equiv x[t_n, t_{n-1}]
\]

\[
\frac{d^2x_n}{dt^2} \approx 2 \frac{x[t_n, t_{n-1}] - x[t_{n-1}, t_{n-2}]}{t_n - t_{n-2}}
\]

\[
\frac{x_n - x_{n-1}}{t_n - t_{n-1}} - \frac{x_{n-1} - x_{n-2}}{t_{n-1} - t_{n-2}}
\]

\[
\approx 2 \frac{x_n - x_{n-1}}{t_n - t_{n-1}} - \frac{x_{n-1} - x_{n-2}}{t_{n-1} - t_{n-2}} - \frac{x_{n-2} - x_{n-3}}{t_{n-2} - t_{n-3}}
\]

\[
\frac{d^kx_n}{dt^k} = k! \frac{x[t_{n1}t_{n-1}, \ldots t_{n-k+1}] - x[t_{n-1}, \ldots t_{n-k}]}{t_n - t_{n-k}}
\]
Note: LTE decreases with h, but when h decreases, round-off error increases.
Linear Multistep Formulas

\[\sum_{i=0}^{k} (\alpha_i x_{n-i} + h\beta_i x_{n-i}) = 0 \]

- \(k \) = # of steps
- \(\beta_0 = 0 \) => explicit formula
- \(\beta_0 \neq 0 \) => implicit formula
- \(p = \text{order} = \text{highest order of basis functions} \{l, t, ..., t^p\} \) that satisfy the formula

\[\text{LTE} = C_{p+1} h^{p+1} \frac{d^{p+1}x}{dt^{p+1}} = O(h^{p+1}) \]

(order can be also found by computing LTE expression)

- \(p \leq 2k \). If \(p < 2k \), some coefficients are chosen arbitrarily (usually zero, but not necessarily)
Examples

What is the order of each of the following formulas?

(a) $x_n = x_{n-1} + x_{n-2} + h(x_n + x_{n-1})$

1: $1 = 1 + 1 \times$ (Does not qualify)

(b) $x_n = \frac{1}{2} x_{n-1} + \frac{1}{2} x_{n-2} + h(x_n + x_{n-1})$

1: $1 = \frac{1}{2} + \frac{1}{2} \checkmark$

t: $t_n = \frac{1}{2} t_{n-1} + \frac{1}{2} t_{n-2} + h(1 + 1)$

$2h = \frac{1}{2} h + 0 + 2h$

Order = 0
(c) $x_n = \frac{1}{2} x_{n-1} + \frac{1}{2} x_{n-2} + h \left(\dot{x}_n + \frac{1}{2} \dot{x}_{n-1} \right)$

1: \[1 = \frac{1}{2} + \frac{1}{2} \quad \checkmark \]

t: \[t_n = \frac{1}{2} t_{n-1} + \frac{1}{2} t_{n-2} + h \left(1 + \frac{1}{2} \right) \]

\[2h = \frac{1}{2} h + 0 + \frac{3}{2} h \quad \checkmark \]

$ t^2$: \[(2h)^2 = \frac{1}{2} (h)^2 + 0 + h \left(2t_n + \frac{1}{2} 2t_{n-1} \right) \]

\[4h^2 = \frac{1}{2} h^2 + 5h^2 \quad \times \]

Order = 1
STABILITY PROPERTIES OF LINEAR MULTISTEP FORMULAS (LMF)
Stability

Consider lmf

\[
\sum_{i=0}^{k} (\alpha_i x_{n-i} + h \beta_i \dot{x}_{n-i}) = 0
\]

Apply formula to test equation \(x = \lambda x \) to get:

\[
\sum_{i=0}^{k} \alpha_i x_{n-i} + h \lambda \sum_{i=0}^{k} \beta_i x_{n-i} = 0
\]

\[
\sum_{i=0}^{k} (\alpha_i + h \lambda \beta_i) x_{n-i} = 0
\]

\[
\gamma_0 x_n + \gamma_1 x_{n-1} + \ldots + \gamma_n x_{n-k} = 0 \quad \text{(difference equation)}
\]

Coefficients \(\gamma_i \)'s are dependent on \(h \lambda \):
The **Characteristic polynomial** of the difference equation is

\[P(z) = \gamma_0 z^k + \gamma_1 z^{k-1} + \ldots + \gamma_k = 0 \]

Assume \(P(z) \) has \(k \) distinct roots, then the solution of difference equation is

\[x_n = \sum_{j=1}^{k} c_j z_j^n \]

- If \(\text{Re}\{\lambda\} < 0 \rightarrow x(t) \rightarrow 0 \text{ as } t \rightarrow \infty \) (absolutely stable)

- To have \(x_n \rightarrow 0 \text{ as } n \rightarrow \infty \) requires
 \[|z_i| < 1 \quad \text{for all } i = 1, \ldots, k \]
The characteristic polynomial can be written as

\[P(z, h\lambda) = \sum_{i=0}^{k} \alpha_i z^{k-i} + h\lambda \sum_{i=0}^{k} \beta_i z^{k-i} = 0 \]

\[= \rho(z) + h\lambda \sigma(z) = 0 \]

- To study the stability of Im f assume Re\{ \lambda\} < 0, (stable test equation) and investigate the location of the roots of \(P(z, h\lambda) = 0 \) as a function of \(h\lambda \)
- For numerical stability, the roots of \(P(z, h\lambda) \) should be less or equal to 1 (with those equal to 1 being simple)
- The stability properties of the formula are studied by analyzing the root locii of \(P(z, h\lambda) = 0 \) as \(|h\lambda| \) varies from 0 to \(\infty \).
- First, the formula should behave 'well' when \(h \to 0 \).
(i) Convergence

\[
\lim_{h \to 0, \ nh = b-a} x_n = x(t_n) \quad \text{for all } t \in [a, b]
\]

Convergence implies that the global truncation Error → 0 when \(h \to 0, \ n \to \infty \) and \(nh = \text{constant} \),
Practical Check of Convergence

- Can also check rate of convergence
(ii) Consistency

A \textit{Imf} is consistent if its order is \(p \geq 1 \); that is, at least it satisfies \(\{1, t\} \)

Consider

\[
P(z, h\lambda) = \sum_{i=0}^{k} \alpha_i z^{k-i} + h\lambda \sum_{i=0}^{k} \beta_i z^{k-i} = 0
\]

\[
= \rho(z) + h\lambda \sigma(z)
\]
Put basis \{1\} in lmf:

\[\sum_{i=0}^{k} \alpha_i = 0 \quad \alpha_0 = -1 \]

\[\rho(1) = \sum_{i=0}^{k} \alpha_i z^{k-i} \bigg|_{z=1} = \sum_{i=0}^{k} \alpha_i = 0 \]

\[\therefore 1 \text{ is a root of } P(z, h\lambda)|_{h\lambda=0} = \rho(z) = 0 \]

If a consistent lmf is applied to solve \(\dot{x} = 0 \), \(x(0) = c \) (i.e., \(\lambda = 0 \)) whose solution is \(x(t) = c \), \(t \geq 0 \), any initial numerical error should die out if the method is to be stable. The numerical solution is given by

\[x_n = \sum_{i=1}^{k} \alpha_i x_{n-i} \]
The solution sequence can be expressed in closed form as

\[x_n = \sum_{i=1}^{k} c_i z_i^n \]

where \(z_i \) are the roots of \(\rho(z) = 0 \).

From consistency, \(z_1 = 1 \) is a root of \(\rho(z) = 0 \).

This root is called the **principal** root.

To ensure stability, the roots of \(\rho(z) = 0 \), \(|z_i| \leq 1 \), \(i = 1, 2, ..., k \) and any root of modulus 1 is simple.

(When \(\dot{x} = \lambda x \), \(\lambda \neq 0 \) and \(h\lambda \neq 0 \), the principal root “tracks” the actual solution.)
(iii) Zero-Stability

If all the roots of $\rho(z) = 0$ satisfy the condition $|z_i| \leq 1$, $i = 1, 2, \ldots, k$, and any root of modulus 1 is simple, then the lmf is zero-stable.

• **Theorem** If a lmf is consistent and zero-stable, then it is **convergent**.

• **Theorem** No zero-stable linear k-step formula can have order exceeding $k + 1$ when k is odd, or exceeding $k + 2$ when k is even.
Examples

Adams Formulas: \(-x_n + \alpha_1 x_{n-1} + h \sum_{i=0}^{k} \beta_i \dot{x}_{n-1} = 0\)

\[-1 + \alpha_1 = 0 \implies \alpha_1 = 1\]

If \(k=1\),

\[\beta_0 = 0, \beta_1 \neq 0 = 1 \implies \text{F.E.}\]
\[\beta_0 \neq 0 = 1, \beta_1 = 0 \implies \beta_0 \neq 0 = 1/2, \beta_1 \neq 0 = 1/2 \implies \text{T.R.}\]

\[\rho(z) = -z^k + z^{k-1} = 0\]

Roots at 1 and 0

Formulas are zero-stable if coefficients \(\beta_i\) are chosen so that formulas satisfies basic function \(\{t\}\), in addition to \(\{1\}\).
k=1 => Backward Euler (B.E.)

\[\sum_{i=0}^{k} \alpha_i x_{n-i} + h\beta_0 \dot{x}_n = 0 \]

\[\rho(z) = -z^2 + \frac{4}{3} z - \frac{1}{3} = 0 \]

Roots are 1 and 1/3 => Zero-Stable

Satisfies \{1, t, t^2\} => Consistent => Convergent
k = 2, p = 3 => consistent

\[\rho(z) = -z^2 - 4z + 5 = 0 \]

Roots are 1, -5 => not zero-stable, therefore not convergent
Apply to test equation:

\[\dot{x} = \lambda x \]

get difference eqn.: \[\sum_{i=0}^{k} (\alpha_i + h\lambda \beta_i) x_{n-i} = 0 \]

whose solution is: \[x_n = \sum_{i=1}^{k} c_i z_i^n \]
If $h\lambda = 0$, $P(z; h\lambda) = \rho(z) = 0$ where z_i are the roots of characteristics polynomial:

\[
P(z; h\lambda) = \sum_{i=0}^{k} \alpha_i z^{k-i} + h\lambda \sum_{i=0}^{k} \beta_i z^{k-i} = 0
\]

\[
\equiv \rho(z) + h\lambda \sigma(z)
\]

If $h\lambda = 0$, $P(z; h\lambda) = \rho(z) = 0$

$z_1 = 1$ is a root of $\rho(z) = 0$ (principal root)
Zero-Stable

If all roots of $\rho(z) = 0$ are within or on unit circle in complex plane, with any roots on the circle being simple.

Consistency

Order of $Im f \rho \geq 1$
Convergent

Consistent + zero-stable

Region of Stability

Is defined as a region S in the complex $h\lambda$-plane where the zeros z_i of the "stability" polynomial $P(z; h\lambda) = 0$ fulfill $|z_i| < 1$, $i = 1, 2, \ldots, k$.
The boundary of the stability region is found from
\[P(z; h\lambda) = \rho(z) + h\lambda\sigma(z) = 0 \]

\[h\lambda = -\frac{\rho(z)}{\sigma(z)} ; |z| = 1 \]

\[= -\frac{\rho(e^{i\theta})}{\sigma(e^{i\theta})}, z = e^{i\theta} \quad 0 \leq 0 \leq 2\pi \]
Examples

B.E.: $-x_n + x_{n-1} + h \dot{x}_n = 0 \implies \dot{x} = \lambda x$

$P(z; h\lambda) = -z + 1 + h\lambda z = 0$

\[
\begin{array}{c|c}
 z & h\lambda \\
 \hline
 1 & 0 \\
 -1 & 2 \\
 j & 1+j \\
 0 & \infty \\
\end{array}
\]

z-plane

h\lambda-plane

Stable

unstable
When \(h \lambda \neq 0 \), it can be shown that \(z_1(h \lambda) \) is a continuous function of \(h \lambda \). The other roots \(z_i \), \(i = 2, \ldots, k \) are called extraneous roots.

The numerical solution

\[
x_n = \sum_{i=1}^{k} c_i z_i^n
\]

will be a good approximation to the exact solution if

\(|z_i| < |z_1|, \ i = 2, \ldots, k \).
Absolute Stability

A *lmf* is said to be absolutely stable for a given $h \lambda$ if the roots z_i of $P(z; h \lambda) = 0$ satisfy $|z_i| < 1$ for $i = 1, 2, ..., k$.

Relative Stability

A *lmf* is said to be relatively stable for a given $h \lambda$ if the roots of $P(z; h \lambda) = 0$ satisfy $|z_i| < |z_1|$ for $i = 2, ..., k$. (Note in this case $|z_1|$ could be < 1 (stable) or >1 (unstable).)
Example: 2nd-order BDF with constant h

\[
-x_n + \frac{4}{3} x_{n-1} - \frac{1}{3} x_{n-2} + \frac{2}{3} h \dot{x}_n = 0
\]

\[P(z; h\lambda) = -z^2 + \frac{4}{3} z - \frac{1}{3} + \frac{2}{3} h \lambda z^2 = 0\]

\[
\left(-1 + \frac{2}{3} h\lambda\right) z^2 + \frac{4}{3} z - \frac{1}{3} = 0
\]

\[
z_1 = \frac{-2 - \sqrt{4 - 3 + 2h\lambda}}{-3 + 2h\lambda}, \quad z_2 = \frac{-2 + \sqrt{1 + 2h\lambda}}{-3 + 2h\lambda}
\]

It can be shown that \(|z_1| < 1, |z_2| < 1\) for \(\text{Re}\{h\lambda\} < 0\) => Formula is absolutely stable in all left half \(h\lambda\)-plane

While \(|z_2| < |z_1|\) if \(|h\lambda| < \frac{1}{2}\) formula is relatively stable in the region \(|h\lambda| < \frac{1}{2}\)
F.E.: \(-x_n + x_{n-1} + h \dot{x}_{n-1} = 0 \Rightarrow \dot{x} = \lambda x\)

\[P(z; h\lambda) = -z + 1 + h\lambda = 0 \]

\[h\lambda = z - 1 \]

\[
\begin{array}{c|cc}
 \hline
 z & h\lambda \\
 \hline
 1 & 0 \\
 -1 & -2 \\
 j & j-1 \\
 0 & -1 \\
 \hline
\end{array}
\]

z-plane

\[\text{unstable} \]

\[\text{stable} \]

\[h\lambda\text{-plane} \]
T.R.: \[-x_n + x_{n-1} + \frac{h}{2} (\dot{x}_n + \dot{x}_{n-1}) = 0\]

\[P(z; \ h\lambda) = -z + 1 + \frac{h\lambda}{2} (z + 1) = 0\]

\[h\lambda = \frac{2(z - 1)}{z + 1}\]

<table>
<thead>
<tr>
<th>z</th>
<th>h\lambda</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>-1</td>
<td>\infty</td>
</tr>
<tr>
<td>j</td>
<td>\frac{2(j - 1)}{j + 1} = 2j</td>
</tr>
<tr>
<td>0</td>
<td>-2</td>
</tr>
</tbody>
</table>

Diagram:
- z-plane
- h\lambda-plane
- Stable region
- Unstable region
- X markers
2nd-Order BDF (or 2nd-Order Gear's Formula) (Constant h)

\[-x_n + \frac{4}{3} x_{n-1} - \frac{1}{3} x_{n-2} + \frac{2}{3} h \dot{x}_n = 0\]

\[P(z; h\lambda) = -z^2 + \frac{4}{3} z - \frac{1}{3} + \frac{2}{3} h \lambda z^2 = 0\]

\[h\lambda = \frac{3z^2 - 4z + 1}{2z^2}\]

<table>
<thead>
<tr>
<th>z</th>
<th>h\lambda</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>-1</td>
<td>4</td>
</tr>
<tr>
<td>j</td>
<td>1 + 2j</td>
</tr>
<tr>
<td>0</td>
<td>\infty</td>
</tr>
</tbody>
</table>

z-plane

\[\text{stable, stable, unstable, unstable}\]

h\lambda-plane
A-Stability: A numerical integration formula is A-stable if its region of stability includes the entire left-half plane; i.e., \(\text{Re} \{h\lambda\} < 0 \).

Examples: B.E., T.R., 2nd-order BDF with constant coefficients are all A-stable. F.E. is not A-stable.

Dalquist's Theorem:
1) An explicit \(\text{Imf} \) cannot be A-stable
2) The order of an A-stable implicit \(\text{Imf} \) cannot exceed two.
3) The 2nd-order A-stable implicit \(\text{Imf} \) with the smallest error constant is the Trapezoidal Rule
Stiffly-Stable Formulas

Formula must be stable when $|h\lambda| \to \infty$ in left-half plane (lhp) (why?)
Consider: \(lmf \) applied to \(\dot{x} = \lambda x \)

\[
P(z; h\lambda) = \sum_{i=0}^{k} \alpha_i z^{k-i} + h\lambda \sum_{i=0}^{k} \beta_i z^{k-i} = 0
\]

\[
= \frac{1}{h\lambda} \left(\sum_{i=0}^{k} \alpha_i z^{k-i} \right) + \left(\beta_0 z^k + \beta_1 z^{k-1} + \ldots + \beta_k \right) = 0
\]

If \(|h\lambda| \to \infty\), \(P(z, \infty) = \beta_0 z^k + \beta_1 z^{k-1} + \ldots + \beta_k = 0 \)

To maintain stability and accuracy when \(|h\lambda| \to \infty\), choose \(\beta_1 = \beta_2 = \ldots = \beta_k = 0 \)
To have the numerical solution → 0 as |hλ| → ∞, we want roots of \(P(z; \infty) \rightarrow 0 \).

Select \(\beta_1 = \beta_2 = \ldots = \beta_k = 0 \)

Then \(P(z, \infty) = \beta_0 z^k = 0 \) and all roots → 0 as |hλ| → ∞.

Get BDFs: \[\sum_{i=0}^{k} \alpha_i x_{n-i} + h\beta_0 \dot{x}_n = 0 \] which turn out to be stiffly-stable for \(k = 1, 2, \ldots, 6 \).

\(z = -1 \) => not damped at \(\infty \).

Note T.R.: \(P(z; h\lambda) = -z_1 + 1 + \frac{h\lambda}{2} (z + 1) = 0 \)

\(P(z, \infty) = \frac{1}{2} (z + 1) = 0 \)

\(z = -1 \) => not damped at \(\infty \).
BDFs for Gear's Formulas for $p = 1, 2, \ldots, 6$)

$p = 1$: $x_n = x_{n-1} + h \dot{x}_n$ (same as B.E.)

$$\text{LTE} = -\frac{1}{2} h^2 \frac{d^2x_n}{dt^2}$$

(Assume const. h):

$p = 2$: $x_n = \frac{4}{3} x_{n-1} - \frac{1}{3} x_{n-2} + \frac{2}{3} h \dot{x}_n$

$$\text{LTE} = -\frac{2}{9} h^3 \frac{d^3x_n}{dt^3}$$

$p = 3$: $x_n = \frac{1}{11} [8x_{n-1} - 9x_{n-2} + 2x_{n-3} + 6h \dot{x}_n]$

$$\text{LTE} = -\frac{3}{22} h^4 \frac{d^4x_n}{dt^4}$$
BDFs for Gear's Formulas for $p = 1, 2, \ldots, 6$ (cont.)

$p = 4$: $x_n = \frac{1}{25} \left[48x_{n-1} - 36x_{n-2} + 16x_{n-3} - 3x_{n-4} + 12h \dot{x}_n \right]$

$$LTE = -\frac{12}{125} h^5 \frac{d^5x_n}{dt^5_n}$$

$p = 5$: $x_n = \frac{1}{137} \left[300x_{n-1} - 300x_{n-2} + 200x_{n-3} - 75x_{n-4} + 12x_{n-5} + 60h \dot{x}_n \right]$

$$LTE = -\frac{60}{1029} h^6 \frac{d^6x_n}{dt^6_n}$$

$p = 6$: $x_n = \frac{1}{147} \left[360x_{n-1} - 450x_{n-2} + 400x_{n-3} - 225x_{n-4} + 72x_{n-5} - 10x_{n-6} + 60h \dot{x}_n \right]$

$$LTE = -\frac{60}{1029} h^7 \frac{d^7x_n}{dt^7_n}$$
Regions of Stability of BDFs
Adam’s Formulas:

\[-x_n + x_{n-1} + h \sum_{j=0}^{k} \beta_j \dot{x}_{n-j} = 0\]
Exercise 1:

Consider

\[x_n = \frac{1}{3} (4x_{n-1} - x_{n-2} + 2h \dot{x}_n) \]

\[k = 2 \]

\[p: \quad 1 = \frac{1}{3} (4 - 1) = \checkmark \]

\[t: \quad t_n = \frac{1}{3} (4t_{n-1} - t_{n-2} + 2h) \]

\[2h = \frac{1}{3} (4h^2 - 0 + 2h(4h)) \quad \checkmark \]

\[t^2: \quad t_n^2 = \frac{1}{3} (4t_{n-1}^2 - t_{n-1}^2 + 2h (2t_n)) \]

\[(2h)^2 = \frac{1}{3} (4h^2 - 0 + 2h(4h)) \quad \checkmark \]

order \(p = 2 \)
Region of Stability: apply to $\dot{x} = \lambda x$

$$P(z, h\lambda) = -z^2 + \frac{4}{3} z - \frac{1}{3} + \frac{2}{3} h \lambda z^2$$

$$h \lambda = \frac{z^2 - \frac{4}{3} z + \frac{1}{3}}{\frac{2}{3} z^2}$$
Exercise 2

Consider

\[x_n = x_{n-1} + \frac{h}{12} (5\dot{x}_n + 8\dot{x}_{n-1} - \dot{x}_{n-2})\]

$k = 2$ (why?)

How to find the order p:
Try polynomials 1, t, t^2, t^3 to determine p.
Region of Stability

\[-z^2 + z + \frac{h\lambda}{12} (5z^2 + 8z - 1) = 0\]

\[h\lambda = \frac{12(z^2 - z)}{5z^2 + 8z - 1}\]

\[
\begin{array}{c|c}
 z & h\lambda \\
 \hline
 1 & 0 \\
 -1 & -6 \\
 j & \frac{6}{25} (-1 - 12j) \\
 8 & \frac{12}{5}
\end{array}
\]

\[\text{stable}\]

\[\text{unstable}\]

\[\text{h}\lambda\text{-plane}\]

\[\text{z-plane}\]
Exercise 3
Consider state equations

\[\begin{align*}
\dot{x}_1 &= -x_1 + x_2 \\
\dot{x}_2 &= x_1 + \alpha x_2, \quad \alpha = +1, -1
\end{align*}\]

Stability of system

\[
\begin{bmatrix} -1 & 1 \\ 1 & \alpha \end{bmatrix} x
\]

Eigenvalues: \(\det [\lambda I - A] = \det \begin{bmatrix} \lambda + 1 & -1 \\ -1 & \lambda - \alpha \end{bmatrix}\)

\[
\det = (\lambda + 1)(\lambda - \alpha) - 1 = 0
\]

\[
\lambda^2 - \alpha \lambda + \lambda - \alpha - 1 = \lambda^2 + (1 - \alpha)\lambda - \alpha - 1 = 0
\]
\[\lambda = \frac{-(1 - \alpha) \pm \sqrt{(1 - \alpha)^2 + 4(1 + \alpha)}}{2} \]

\(\alpha = 1 \quad \lambda = \frac{\pm \sqrt{8}}{2} = \pm \sqrt{2} \quad \} \text{unstable} \)

\(\alpha = -1 \quad \lambda = -2 \pm \sqrt{2^2 + 4(0)/2} \)

\[= \frac{2 \pm 2}{2} = -2, 0 \quad \} \text{marginally stable} \]
Numerical Solution

(a) Consider $x_n = \frac{4}{3} x_{n-1} - \frac{1}{3} x_{n-2} + \frac{2}{3} h \dot{x}_n$.

Apply formula to system equations.

$\alpha = 1 \implies \lambda = \pm \sqrt{2}$ unstable

$0 < h\lambda < 4$

$0 < h < \frac{4}{\sqrt{2}} = 2\sqrt{2}$ Inside region of instability

$\alpha = -1, \lambda = 0, -2 \implies h > 0$ stable
(b) Consider

Apply formula to system equations.

\[x_n = x_{n-1} + \frac{h}{12} (5\dot{x}_n + 8\dot{x}_{n-1} - \dot{x}_{n-2}) \]

\[\alpha = 1, \lambda = \pm \sqrt{2} \Rightarrow \text{unstable: } h > 0 \]

\[\alpha = -1 \Rightarrow \lambda = 0, -2 \]

\[-6 < h(-2) < 0 \Rightarrow 0 < h < 3 \]
Exercise 4

In the following RLC circuit determine the range of the time step \(h \) so that the numerical solution behaves the same way as the analytic solution from the stability point of view. Consider B.E., F.E., and T.R.

\[L > 0, \ C > 0, \ R = 7, \ 0, \ -7 \ (\text{three cases}) \]
State Equations

Or,

\begin{align*}
C \frac{dv_c}{dt} &= i_L \\
-E(t) + Ri_L + L \frac{di_L}{dt} + v_c &= 0
\end{align*}

Or,

\begin{align*}
L \frac{di_L}{dt} &= -v_c - Ri + E(t) \\
\frac{dv_c}{dt} &= \frac{1}{C} i_L \\
\frac{di_L}{dt} &= \frac{1}{L} (-Ri_L - v_c) + \frac{1}{L} E(t)
\end{align*}
\[
\begin{bmatrix}
\dot{v}_c \\
i_L
\end{bmatrix} = \begin{bmatrix}
0 & \frac{1}{C} \\
-\frac{1}{L} & -\frac{R}{L}
\end{bmatrix} \begin{bmatrix}
v_c \\
i_L
\end{bmatrix} + \begin{bmatrix}
0 \\
1
\end{bmatrix} E(t)
\]

\[A = \begin{bmatrix}
0 & 10 \\
-1 & -R
\end{bmatrix}\]

\[\det [\lambda I - A] = \det \begin{bmatrix}
\lambda & -10 \\
+1 & \lambda + R
\end{bmatrix}\]

\[\lambda^2 + R\lambda + 10 = 0\]

\[\lambda = \frac{-R \pm \sqrt{R^2 - 40}}{2}\]
<table>
<thead>
<tr>
<th>R = 7,</th>
<th>$\lambda = \frac{-7 \pm \sqrt{49 - 40}}{2} = -5, -2$</th>
<th>(stable)</th>
</tr>
</thead>
<tbody>
<tr>
<td>R = 0,</td>
<td>$\lambda = \frac{\sqrt{-40}}{2} = \pm j \sqrt{10}$</td>
<td>(oscillatory)</td>
</tr>
<tr>
<td>R = -7,</td>
<td>$\lambda = (7 \pm \sqrt{49 - 40})/2 = 5, 2$</td>
<td>(unstable)</td>
</tr>
</tbody>
</table>
OR, use Laplace Transform

$$Y(s) = \frac{1}{R + SL + \frac{1}{SC}}$$

$$= \frac{SC}{S^2LC + SRC + 1}$$

Poles

$$s = \frac{-RC \pm \sqrt{(RC)^2 - 4LC}}{2LC}$$

$$s = \frac{-R \pm \sqrt{R^2 - 40}}{2}$$

R = 7, \hspace{1cm} s = \frac{-7 \pm \sqrt{9}}{2} = -5, -2

R = 0, \hspace{1cm} s = \frac{\pm \sqrt{-40}}{2} = \pm j \sqrt{10}

R = -7, \hspace{1cm} s = \frac{+7 \pm \sqrt{9}}{2} = 5, 2$$
Limits on h

- $R = 7, \lambda = -5, -2$:
 - B.E. $h > 0$
 - F.E. $h < 2/5$
 - T.R. $h > 0$

- $R = 0, \lambda = -j\sqrt{10}, j\sqrt{10}$:
 - B.E. $h = 0$
 - F.E. $h = 0$
 - T.R. $h > 0$

- $R = -7, \lambda = 5, 2$:
 - B.E. $h < 2/5$
 - F.E. $h > 0$
 - T.R. $h > 0$