EXAM 1 SOLUTIONS

Tuesday, October 7, 2014

Problem 1 (25 points)

X is a scalar random variable with the following probability distribution,

$$p_{X|B}(x|b) = \begin{cases} bx^{-(b+1)} & x \geq 1 \\ 0 & x < 1 \end{cases},$$

where b is another random variable, whose a priori distribution is

$$p_B(b) \propto \begin{cases} b^m \mu^{-(b+1)} & b > 0 \\ 0 & b \leq 0 \end{cases},$$

and where μ and m are constant hyperparameters. You are given a database of i.i.d. training examples $X = \{x_1, \ldots, x_n\}$. The MAP estimate of b is defined by $b_{MAP} = \arg \max p(b|X)$. Find b_{MAP}.

Solution

$$b_{MAP} = \frac{m + n}{m \ln \mu + \sum_{i=1}^{n} \ln x_i}$$

Problem 2 (25 points)

Discrete random variable H and continuous random variable V are jointly distributed as

$$p_{H,V|\Theta}(p, v|\theta) = \frac{0.5}{\sqrt{2\pi}} e^{-\frac{1}{2}(v-\mu_h)^2}, \quad h \in \{0, 1\}, \quad -\infty < v < \infty$$

where $\theta = [\mu_0, \mu_1]^T$ is a vector of parameters. You are given a database of i.i.d. examples of V, $V = \{v_1, \ldots, v_n\}$, but you are not told what are the associated values of H. Define

$$\gamma_i(h) = \frac{p_{H,V|\Theta}(h, v_i|\theta)}{p_{H,V|\Theta}(0, v_i|\theta) + p_{H,V|\Theta}(1, v_i|\theta)}$$

Suppose there are two candidate parameter vectors, θ and $\tilde{\theta} = [\tilde{\mu}_0, \tilde{\mu}_1]^T$, and suppose that

$$Q(\theta, \tilde{\theta}) = \sum_{i=1}^{n} E \left[\ln p_{H,V|\tilde{\theta}}(H, v_i|\tilde{\theta}) | v_i, \tilde{\theta} \right]$$

Find $\partial Q/\partial \tilde{\mu}_0$.

Solution

\[\frac{\partial Q}{\partial \tilde{\mu}_0} = \sum_{i=1}^{n} \gamma_i(0)(v_i - \tilde{\mu}_0) \]

Problem 3 (25 points)

A two-layer neural net has MSE error criterion

\[E = \frac{1}{2} \sum_{i=1}^{n} \|z_i - t_i\|^2 \]

where \(t_i = [t_{1i}, \ldots, t_{ri}]^T \) is the target vector, and \(z_i = [z_{1i}, \ldots, z_{ri}]^T \) is the network output. \(z_i \) is computed as

\[z_{ki} = \text{g}_{\text{RLU}}(w_k^T y_i) \]

where \(w_k = [w_{1k}, \ldots, w_{qk}]^T \) is a weight vector, and \(y_i = [y_{1i}, \ldots, y_{qi}]^T \) is the hidden layer. \(y_i \) is computed as

\[y_{ji} = \text{g}_{\text{RLU}}(v_j^T x_i) \]

where \(v_j = [v_{1j}, \ldots, v_{pj}]^T \) is a weight vector, and \(x_i = [x_{1i}, \ldots, x_{pi}]^T \) is the network input. The rectified linear units are defined by

\[g_{\text{RLU}}(a) = \max(0, a) \]

Notice that, with these definitions,

\[\frac{\partial E}{\partial w_{kj}} = \sum_{i \in S} \delta_{ki} y_{ji} \]

for some set of indices \(S \) which is a subset of \(\{1, \ldots, n\} \). Find a definition of \(S \) that permits you to write \(\delta_{ki} = (z_{ki} - t_{ki}) \).

Solution

\[S = \{ i : w_k^T y_i > 0 \} \]

Problem 4 (25 points)

Second-order error approximations are defined by

\[E(w) \approx \frac{1}{2}(w - w^*)^TB(w - w^*) + E_{\text{min}} \]

The line search algorithm is defined by

\[\alpha_t = \arg \min_{\alpha} E(w_t + \alpha d_t) \]

\[w_{t+1} = w_t + \alpha_t d_t \]
Let \(v_k \) and \(\lambda_k \) be the eigenvectors and eigenvalues, respectively, of the matrix \(B \), and define

\[
\begin{align*}
 r_{kt} &= v_k^T(w_t - w^*) \\
 q_{kt} &= v_k^T d_t
\end{align*}
\]

Express \(\alpha_t \) as a function of only \(r_{kt}, q_{kt} \), and \(\lambda_k \), with no other variables in your answer.

Solution

\[
\alpha_t = -\frac{\sum_{k=1}^{N} \lambda_k q_{kt} r_{kt}}{\sum_{k=1}^{N} \lambda_k q_{kt}^2}
\]

\[
\alpha_t = -\frac{\sum_{k=1}^{N} \lambda_k q_{kt} r_{kt}}{\sum_{k=1}^{N} \lambda_k q_{kt}^2}
\]