# UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN 

Department of Electrical and Computer Engineering

## ECE 544NA Pattern Recognition

Fall 2014

## EXAM 3 SOLUTIONS

Monday, December 15, 2014

## Problem 1 (25 points)

(a) $F_{n}(\epsilon)$ is the probability that either there is no datum in the range $[\theta-\epsilon, \theta]$, or there is no datum in the range $[\theta, \theta+\epsilon]$, or both. This probability is

$$
F_{n}(\epsilon)=2(1-\epsilon)^{n}-(1-2 \epsilon)^{n}
$$

(b) After $n$ training data we are guaranteed that $b_{n+1} \leq \theta \leq b_{n+1}+s_{n}$. Given this condition, $F_{n}(\epsilon)$ is the probability that $b_{n+1}+\epsilon \leq \theta$ or $\theta \leq b_{n+1}+s_{n}-\epsilon$ or both, which is

$$
F_{n}(\epsilon)= \begin{cases}1 & \epsilon \leq 2^{-(n+1)} \\ 1-2^{(n+1)} \epsilon & 2^{-(n+1)} \leq \epsilon \leq 2^{-n} \\ 0 & 2^{-n} \leq \epsilon\end{cases}
$$

## Problem 2 (25 points)

(a)

$$
\frac{\partial \mathcal{E}}{\partial \mu_{k}}=2 \sum_{i: k_{i}=k}\left(\mu_{k}-x_{i}\right)
$$

Setting the derivative equal to zero yields the desired result.
(b) The index will change if $\Delta \mathcal{F}<0$, where

$$
\Delta \mathcal{F}= \begin{cases}\left\|x_{i}-\mu_{k_{i}}\right\|^{2}-\left\|x_{i}-\mu_{\hat{k}_{i}}\right\|^{2} & x_{i} \text { unlabeled, or } y_{i}=y\left(k_{i}\right)=y\left(\hat{k}_{i}\right) \\ \frac{\lambda}{n_{k_{i}}+1}+\left\|x_{i}-\mu_{k_{i}}\right\|^{2}-\left\|x_{i}-\mu_{\hat{k}_{i}}\right\|^{2} & y_{i}=y\left(\hat{k}_{i}\right) \neq y\left(k_{i}\right) \\ \left\|x_{i}-\mu_{k_{i}}\right\|^{2}-\left\|x_{i}-\mu_{\hat{k}_{i}}\right\|^{2}-\frac{\lambda}{n_{\hat{k_{i}}}} & y_{i}=y\left(k_{i}\right) \neq y\left(\hat{k}_{i}\right) \\ \frac{\lambda}{n_{k_{i}}+1}+\left\|x_{i}-\mu_{k_{i}}\right\|^{2}-\left\|x_{i}-\mu_{\hat{k}_{i}}\right\|^{2}-\frac{\lambda}{n_{\hat{k}_{i}}} & y_{i} \neq y\left(k_{i}\right) \text { and } y_{i} \neq y\left(\hat{k}_{i}\right)\end{cases}
$$

where $y\left(k_{i}\right)$ is the majority label of cluster $k_{i}$ after reassignment, $y\left(\hat{k}_{i}\right)$ is the majority label of cluster $\hat{k}_{i}$ before reassignment, and $n_{k_{i}}$ and $n_{\hat{k}_{i}}$ are the counts of those clusters before reassignment.
(a)

$$
\gamma_{i}(h ; \theta)=\frac{c_{h} \lambda_{h} e^{-\lambda_{h} v_{i}}}{\sum_{k=1}^{m} c_{k} \lambda_{k} e^{-\lambda_{k} v_{i}}}
$$

(b) Define

$$
\lambda_{h}=\frac{\sum_{i=1}^{n} \gamma_{i}(h ; \hat{\theta})}{\sum_{i=1}^{n} v_{i} \gamma_{i}(h ; \hat{\theta})}
$$

Problem 4 (25 points)
(a)

$$
\epsilon_{i \ell}=-\frac{t_{i \ell}}{z_{i \ell}} g^{\prime}\left(b_{i \ell}\right)
$$

(b)

$$
\begin{gathered}
\frac{\partial \mathcal{E}}{\partial v_{\ell k}}=\sum_{i=1}^{n} \epsilon_{i \ell} y_{i k} \\
\frac{\partial \mathcal{E}}{\partial u_{k j}}=\sum_{i=1}^{n} f^{\prime}\left(a_{i k}\right) x_{i j} \sum_{\ell=1}^{r} \epsilon_{i \ell} v_{\ell k}
\end{gathered}
$$

