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Problem 1 (34 points)

(a) Choose a direction, uniformly at random. Lean in that direction.

(b) If the ground slopes downhill, take a step.

(c) If the ground slopes uphill, take a step with probability P (zk−1, zk) dependent on the
current altitude zk−1 and proposed future altitude zk, where

P (zk−1, zk) = e−α(zk−zk−1)/Tk (1)

The altitudes zk−1 and zk are measured in meters above sea level; as you may know, altitudes
in Urbana vary in the range 200 ≤ z ≤ 250 meters (Amanda’s house is at z∗ = 200 meters).
The variable Tk represents the tempo, in beats per minute, of the music on her mp3 player;
since her battery is running out, this is a strictly non-increasing function of time, Tk−1 ≥ Tk.
The constant α = 10 bpm/meter.

(a) Given the information that you have, what are the smallest possible values of Tk that are
guaranteed, with probability one, to eventually deliver Amanda to her house?

SOLUTION: Tk = 500
ln(k+1)

(b) Suppose that Amanda starts her journey in a bar at altitude z0 = 240m. Is this informa-
tion sufficient to change your answer to part (a)? Why or why not?

SOLUTION: No, because the bar might be clinging to the side of the hill in a valley
49.999 meters deep. Amanda’s initial trajectory might take her to the bottom of that
valley, and then, unless Tk ≥ 500

ln(k+1) , she would not be guaranteed to recover.

(c) Suppose that now Amanda has developed the ability to teleport. Therefore her algorithm
for getting home is now, for k ∈ {1, 2, . . .},

(i) Choose a target location somewhere in Urbana, uniformly at random.

(ii) If that location is downhill, teleport there.

(iii) If that location is uphill, teleport there with probability P (zk−1, zk) given by Eq. 1.

Under this algorithm, what are the smallest possible values of Tk that guarantee, with
probability one, that Amanda will eventually find her way home?

SOLUTION: All locations are now neighbors, therefore Amanda never has to travel
uphill ever again, so Tk = 0 suffices.
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(d) Suppose that we fix Tk at a constant slow tempo, Tk = 2bpm, for all time. Prove that,
under this circumstance, Amanda is guaranteed to eventually reach home with probability
one (although her algorithm will not guarantee that she stays there once she has arrived).

SOLUTION: Every location in Urbana can be reached, with nonzero probability, from
any of its neighbors. There is therefore a path with nonzero probability from any start-
ing location to any ending location. Since every location can be reached with nonzero
probability from every other location, therefore with probability 1, every location will be
reached eventually.

Problem 2 (33 points)

Consider an RBM with visible variables v ∈ {0, 1}p, and with hidden variables h ∈ <q.
Suppose that the joint probability p(h, v) is given by

p(h, v) =
1

Z
e−h

TWv− 1
2
hTRh (2)

where R is positive definite, and W = [w1, . . . , wp] for column vectors wk = [w1k, . . . , wqk]
T .

(a) Suppose that, for some odd reason, you have a training database in which both hi and vi
are specified. Define

L =

n∑
i=1

ln p(hi, vi)

Compute ∂L/∂wjk as a function of h1, . . . , hn, v1, . . . , vn, W , and R. Your answer may
include unevaluated explicit integrals or sums, but should not include any unevaluated
expectations.

SOLUTION: ∂L
∂wjk

= −
∑n

i=1 hijvik + n
∑

v∈{0,1}p
∫
hjvke

−hTWvdh∑
v∈{0,1}p

∫
e−hTWvdh

(b) What is E[h|v]? Remember that h ∈ <q. Specify your answer in terms of v, W , and
R. Your answer should not include any unevaluated integrals, sums, or expectations.
You may find it useful to know that every positive definite matrix, A, has a square root
(A = A1/2A1/2), and an inverse (AA−1 = I), and that both A1/2 and A−1 are also positive
definite.

SOLUTION: E[h|v] = −R−1Wv

(c) Now imagine the converse: you are given h. Remember that v ∈ {0, 1}p. Please compute
the conditional probability that the jth component of v is “turned on,” that is, com-
pute Pr {vj = 1|h}. Your answer should not include any unevaluated integrals, sums, or
expectations.

SOLUTION: Pr {vj = 1|h} = 1

1+eh
T wj

Problem 3 (33 points)

This problem considers a few different function classes that map from X = <p to Y = {0, 1}.
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(a) Consider the function class

Ha = {h : h(x) = [x == µ] , µ ∈ <p}

where [·] is the unit indicator function. What is the VC dimension of class Ha? Prove
your answer: demonstrate that, with probability one, a training dataset mathcalD =
{x1, . . . , xn} of size n > d can be labeled in only O

{
nd
}

different ways for VC dimension
d.

SOLUTION: dV C = 1. From any training dataset, it is possible to choose any one token
to label as class 1; all others will be class 0. There are therefore at most O{n} ways to
label a size-n dataset.

(b) Consider the function class

Hb =
{
h : h(x) = [‖x− µ‖ < b] , µ ∈ <p, b ∈ <+

}
where [·] is the unit indicator function, and ‖x‖ is the Euclidean norm. What is the
VC dimension of class Hb? Prove your answer: demonstrate that a training dataset
mathcalD = {x1, . . . , xn} of size n > d can be labeled in only O

{
nd
}

different ways.

SOLUTION: dV C = (p+ 1). This is a spherical classifier with threshold, which has the
same VC dimension as a linear classifier with threshold. There are O{np} ways in which
the dataset can be ordered, by choosing the centroid µ ∈ <p. Given a centroid, there are
O{n} meaningfully different ways in which to choose the threshold. It can also be shown
that this classifier is adequate to fracture every dataset of size n = (p + 1), but is not
adequate to fracture every dataset of size n = p+ 2.

(c) Consider the function class

Hc =
{
h : h(x) =

[
µTx ≥ 1

]
, µ ∈ <p

}
where [·] is the unit indicator function. What is the VC dimension of class Hc? Prove
your answer: demonstrate that a training dataset mathcalD = {x1, . . . , xn} of size n > d
can be labeled in only O

{
nd
}

different ways, and/or demonstrate that a dataset can be
labeled in 2n different ways if and only if n < d.

SOLUTION: dV C = p. This is a linear classifier without an explicit threshold. Although
it seems to have the same flexibility as the linear classifier with threshold, it is relatively
easy to show that this classifier can label any dataset with only 1

2 as many different
labelings as the linear classifier with explicit threshold. What is far less intuitively obvious
(but true) is that the factor of two is sufficient to reduce the total number of labelings,
for any dataset, to only O{np}. One proof was given in the Vapnik-Chervonenkis paper;
another was given in class. It is also possible to show that this classifier can fracture
any dataset of size n = p, but that there are datasets of size n = p + 1 that cannot be
fractured.


