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Problem 1 (20 points)

Linear regression is defined by p-dimensional observation vectors, ~xt, and scalar targets, yt,
which can be arranged into matrices as

X =

 ~xT1
...
~xTT

 , Y =

 y1
...
yT


The goal of linear regression is to find a weight vector ~w = [w1, . . . , wp]

T to minimize E =
‖Y − X ~w‖2. This can be done in closed form, as ~w = X†Y , or using an iterative gradient
descent algorithm, with iterations ~w ← ~w − η∇~wE. Suppose that gradient descent requires
m iterations, T is the number of training tokens, and p is the dimension of ~xt; in terms of
m, T , and p, specify the computational complexity of the closed-form and gradient descent
algorithms. Assume T > p.

(a) Closed-form:

SOLUTION: O
{
Tp2

}
because XTX requires Tp2, then inverting it requires p3 but

p < T .

(b) Gradient Descent:

SOLUTION: O{mTp} because there are m iterations each requiring the matrix-vector
product of XT with (Y −X ~w).

Problem 2 (15 points)

A particular set of N swimmers is characterized by personality vectors ~xn, for 1 ≤ n ≤ N .
Each of the swimmers has tried T times to swim faster than a particular threshold time. Suppose
that the variable ynt = 1 if the nth swimmer beat the target time on the tth trial, otherwise
ynt = 0. A logistic regression model ŷn = ~wT~xn is trained in order to minimize

E =
1

2NT

N∑
n=1

T∑
t=1

(ynt − ŷn)2

Notice that ŷn is a function of n, but not of t. Define pn = 1
T

∑T
t=1 ynt to be the fraction of

victories achieved by the nth swimmer. Find a formula for ∇~wE that depends only on pn, ~w,
and ~xn, and does not depend on ynt.

SOLUUTION:

∇~wE =
1

NT

N∑
n=1

T∑
t=1

(ŷn − ynt)∇~wŷn

=
1

NT

N∑
n=1

T∑
t=1

(ŷn − ynt) g′(~wT~xn)~xn,

where the g′() was not graded because g() was omitted from the problem statement. Simplifying,

∇~wE =
1

N

N∑
n=1

(ŷn − pn) g′(~wT~xn)~xn
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Problem 3 (15 points)

A support vector machine finds ~w in order to minimize

E =
1

2
‖~w‖2 + CRdata

where

Rdata =

T∑
t=1

max
(
0, 1− yt ~wT~xt

)
where 1 ≤ t ≤ T is the token index, C is an arbitrary constant, ~xt is the observation vector,
and yt ∈ {−1, 1} is the target. Demonstrate that the optimum value of ~w (the value that sets
∇~wE = 0) can be expressed as a linear combination of some of the training vectors yt~xt.

SOLUTION:
∇~wE = ~w −

∑
t∈I

yt~xt

which equals zero at

~w =
∑
t∈I

yt~xt

where I =
{
t : 1− yt ~wT~xT > 0

}
Problem 4 (26 points)

The outputs z
(L)
jt of a softmax function are defined in terms of its inputs a

(L)
jt as

z
(L)
jt =

ea
(L)
jt∑n

k=1 e
a
(L)
kt

where 1 ≤ t ≤ T is the training token index, 1 ≤ j ≤ n is the output node number, and L is the
number of layers in the neural network (thus layer number L is the last layer). The training
corpus error may be defined as

E = −
T∑
t=1

n∑
j=1

yjt log z
(L)
jt

where yjt ∈ {0, 1} is the training target.

(a) Define δ
(L)
jt = ∂E/∂a

(L)
jt . Give a formula for δ

(L)
jt in terms of ~z

(L)
jt and yjt.

SOLUTION:
∂E

∂a
(L)
jt

= −
n∑

i=1

yit

z
(L)
it

∂z
(L)
it

∂a
(L)
jt

where
∂z

(L)
it

∂a
(L)
jt

=

{
z
(L)
it (1− z(L)it ) i = j

−z(L)it z
(L)
jt i 6= j
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Therefore
∂E

∂a
(L)
jt

= −yjt +

n∑
i=1

yitz
(L)
jt

(b) On Saturday October 1, 2016 in room 1005 of the Beckman Institute, Shuicheng Yang
proposed that the fully-connected output layer of a CNN can be replaced by an average-
pooling layer, defined similarly to the average-pooling final layer of a TDNN, thus:

a
(L)
jt =

∑
p

∑
q

z
(L−1)
jt (p, q)

z
(L−1)
jt (p, q) = f(a

(L−1)
jt (p, q))

where p and q are the pixel indices in the (L− 1)th layer, j is the channel index in both
the (L− 1)st and Lth layer, and f() is a nonlinearity whose derivative is f ′(). Define the
back-prop errors to be

δ
(L)
jt =

∂E

∂a
(L)
jt

, δ
(L−1)
jt (p, q) =

∂E

∂a
(L−1)
jt (p, q)

Express δ
(L−1)
jt (p, q) in terms of of δ

(L)
jt and f ′(a

(L−1)
jt (p, q)).

SOLUTION: δ
(L−1)
jt (p, q) = δ

(L)
jt f

′(a
(L−1)
jt (p, q)).

Problem 5 (24 points)

Suppose we have a database of feature vectors ~xt and associated labels yt ∈ {−1, 1}, where
1 ≤ t ≤ T .

• Define ~zt, for this problem only, to be the signed feature vector, ~zt = yt~xt.

• Define W∞ to be the set of vectors ~w such that ~wT~zt > 0 for all t.

• Assume linearly separable classes, which means that W∞ is not an empty set.

• Define ~w0 =
∑T

t=1 ~zt

For each of the following statements, circle T if the statement is always true, circle F if the
statement is sometimes false. If true, prove it. If false, disprove it (e.g., provide a training
set {~z1, ~z2} that is linearly separable but disproves the claim; or you may use any other proof
method).

(a) ~wT
0 ~w∞ > 0, for all ~w∞ ∈ W∞: T

Proof:

~wT
0 ~w∞ =

T∑
t=1

~zTt ~w∞ > 0

(b) ~wT
0 ~w∞ ≥ 0, for all ~w∞ ∈ W∞: T

Proof: Part (a) implies part (b).
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(c) The vector ~w0 is in the set W∞: F?
Proof: A counter-example is the training dataset ~z1 = [15, 1]T , ~z2 = [−1, 1]T .

(d) ~w ∈ W∞ is unique (there is only one ~w such that ~wT~zt > 0 for all t): F?
Proof: A counter-example is the training dataset ~z1 = [15, 1]T , ~z2 = [−1, 1]T .

In the following two subsections, define

~wn = ~wn−1 −∇~wn−1
En−1

where

En−1 =
T∑
t=1

max
(
0,−~wT

n−1~zt
)

(e) ~wT
0∇~w0

E0 ≤ 0: F
Proof: ∇~w0

E0 = −
∑

t∈I ~zt, where I =
{
t : ~wT

0 ~zt < 0
}

, therefore

~wT
0∇~w0

E0 = −
∑
t∈I

~wT
0 ~zt > 0

(f) ~wT
1 ~w∞ ≥ 0 for all ~w∞ ∈ W∞: T

Proof:

~wT
∞ ~w1 = ~wT

∞

(
~w0 +

∑
t∈I

~zt

)
=
∑
t6∈I

~wT
∞~zt +

∑
t∈I

2~wT
∞~zt > 0


