UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN

Department of Electrical and Computer Engineering

ECE 544NA Pattern Recognition
Fall 2016

EXAM 1 SOLUTIONS

Tuesday, October 4, 2016

- This is a CLOSED BOOK exam. You may use one page, both sides, of handwritten notes.
- There are a total of 100 points in the exam. Plan your work accordingly.
- You must SHOW YOUR WORK to get full credit.

Problem	Score
1	
2	
3	
4	
5	
Total	

Name: \qquad

Problem 1 (20 points)

Linear regression is defined by p-dimensional observation vectors, \vec{x}_{t}, and scalar targets, y_{t}, which can be arranged into matrices as

$$
X=\left[\begin{array}{c}
\vec{x}_{1}^{T} \\
\vdots \\
\vec{x}_{T}^{T}
\end{array}\right], \quad Y=\left[\begin{array}{c}
y_{1} \\
\vdots \\
y_{T}
\end{array}\right]
$$

The goal of linear regression is to find a weight vector $\vec{w}=\left[w_{1}, \ldots, w_{p}\right]^{T}$ to minimize $E=$ $\|Y-X \vec{w}\|^{2}$. This can be done in closed form, as $\vec{w}=X^{\dagger} Y$, or using an iterative gradient descent algorithm, with iterations $\vec{w} \leftarrow \vec{w}-\eta \nabla_{\vec{w}} E$. Suppose that gradient descent requires m iterations, T is the number of training tokens, and p is the dimension of \vec{x}_{t}; in terms of m, T, and p, specify the computational complexity of the closed-form and gradient descent algorithms. Assume $T>p$.
(a) Closed-form:

SOLUTION: $\mathcal{O}\left\{T p^{2}\right\}$ because $X^{T} X$ requires $T p^{2}$, then inverting it requires p^{3} but $p<T$.
(b) Gradient Descent:

SOLUTION: $\mathcal{O}\{m T p\}$ because there are m iterations each requiring the matrix-vector product of X^{T} with $(Y-X \vec{w})$.

Problem 2 (15 points)

A particular set of N swimmers is characterized by personality vectors \vec{x}_{n}, for $1 \leq n \leq N$. Each of the swimmers has tried T times to swim faster than a particular threshold time. Suppose that the variable $y_{n t}=1$ if the $n^{\text {th }}$ swimmer beat the target time on the $t^{\text {th }}$ trial, otherwise $y_{n t}=0$. A logistic regression model $\hat{y}_{n}=\vec{w}^{T} \vec{x}_{n}$ is trained in order to minimize

$$
E=\frac{1}{2 N T} \sum_{n=1}^{N} \sum_{t=1}^{T}\left(y_{n t}-\hat{y}_{n}\right)^{2}
$$

Notice that \hat{y}_{n} is a function of n, but not of t. Define $p_{n}=\frac{1}{T} \sum_{t=1}^{T} y_{n t}$ to be the fraction of victories achieved by the $n^{\text {th }}$ swimmer. Find a formula for $\nabla_{\vec{w}} E$ that depends only on p_{n}, \vec{w}, and \vec{x}_{n}, and does not depend on $y_{n t}$.

SOLUUTION:

$$
\begin{aligned}
& \nabla_{\vec{w}} E=\frac{1}{N T} \sum_{n=1}^{N} \sum_{t=1}^{T}\left(\hat{y}_{n}-y_{n t}\right) \nabla_{\vec{w}} \hat{y}_{n} \\
& =\frac{1}{N T} \sum_{n=1}^{N} \sum_{t=1}^{T}\left(\hat{y}_{n}-y_{n t}\right) g^{\prime}\left(\vec{w}^{T} \vec{x}_{n}\right) \vec{x}_{n},
\end{aligned}
$$

where the $g^{\prime}()$ was not graded because $g()$ was omitted from the problem statement. Simplifying,

$$
\nabla_{\vec{w}} E=\frac{1}{N} \sum_{n=1}^{N}\left(\hat{y}_{n}-p_{n}\right) g^{\prime}\left(\vec{w}^{T} \vec{x}_{n}\right) \vec{x}_{n}
$$

Problem 3 (15 points)

A support vector machine finds \vec{w} in order to minimize

$$
E=\frac{1}{2}\|\vec{w}\|^{2}+C R_{\text {data }}
$$

where

$$
R_{d a t a}=\sum_{t=1}^{T} \max \left(0,1-y_{t} \vec{w}^{T} \vec{x}_{t}\right)
$$

where $1 \leq t \leq T$ is the token index, C is an arbitrary constant, \vec{x}_{t} is the observation vector, and $y_{t} \in\{-1,1\}$ is the target. Demonstrate that the optimum value of \vec{w} (the value that sets $\left.\nabla_{\vec{w}} E=0\right)$ can be expressed as a linear combination of some of the training vectors $y_{t} \vec{x}_{t}$.

SOLUTION:

$$
\nabla_{\vec{w}} E=\vec{w}-\sum_{t \in I} y_{t} \vec{x}_{t}
$$

which equals zero at

$$
\vec{w}=\sum_{t \in I} y_{t} \vec{x}_{t}
$$

where $I=\left\{t: 1-y_{t} \vec{w}^{T} \vec{x}_{T}>0\right\}$

Problem 4 (26 points)

The outputs $z_{j t}^{(L)}$ of a softmax function are defined in terms of its inputs $a_{j t}^{(L)}$ as

$$
z_{j t}^{(L)}=\frac{e^{a_{j t}^{(L)}}}{\sum_{k=1}^{n} e^{a_{k t}^{(L)}}}
$$

where $1 \leq t \leq T$ is the training token index, $1 \leq j \leq n$ is the output node number, and L is the number of layers in the neural network (thus layer number L is the last layer). The training corpus error may be defined as

$$
E=-\sum_{t=1}^{T} \sum_{j=1}^{n} y_{j t} \log z_{j t}^{(L)}
$$

where $y_{j t} \in\{0,1\}$ is the training target.
(a) Define $\delta_{j t}^{(L)}=\partial E / \partial a_{j t}^{(L)}$. Give a formula for $\delta_{j t}^{(L)}$ in terms of $z_{j t}^{(L)}$ and $y_{j t}$.

SOLUTION:

$$
\frac{\partial E}{\partial a_{j t}^{(L)}}=-\sum_{i=1}^{n} \frac{y_{i t}}{z_{i t}^{(L)}} \frac{\partial z_{i t}^{(L)}}{\partial a_{j t}^{(L)}}
$$

where

$$
\frac{\partial z_{i t}^{(L)}}{\partial a_{j t}^{(L)}}= \begin{cases}z_{i t}^{(L)}\left(1-z_{i t}^{(L)}\right) & i=j \\ -z_{i t}^{(L)} z_{j t}^{(L)} & i \neq j\end{cases}
$$

Therefore

$$
\frac{\partial E}{\partial a_{j t}^{(L)}}=-y_{j t}+\sum_{i=1}^{n} y_{i t} z_{j t}^{(L)}
$$

(b) On Saturday October 1, 2016 in room 1005 of the Beckman Institute, Shuicheng Yang proposed that the fully-connected output layer of a CNN can be replaced by an averagepooling layer, defined similarly to the average-pooling final layer of a TDNN, thus:

$$
\begin{gathered}
a_{j t}^{(L)}=\sum_{p} \sum_{q} z_{j t}^{(L-1)}(p, q) \\
z_{j t}^{(L-1)}(p, q)=f\left(a_{j t}^{(L-1)}(p, q)\right)
\end{gathered}
$$

where p and q are the pixel indices in the $(L-1)^{\text {th }}$ layer, j is the channel index in both the $(L-1)^{\text {st }}$ and $L^{\text {th }}$ layer, and $f()$ is a nonlinearity whose derivative is $f^{\prime}()$. Define the back-prop errors to be

$$
\delta_{j t}^{(L)}=\frac{\partial E}{\partial a_{j t}^{(L)}}, \quad \delta_{j t}^{(L-1)}(p, q)=\frac{\partial E}{\partial a_{j t}^{(L-1)}(p, q)}
$$

Express $\delta_{j t}^{(L-1)}(p, q)$ in terms of of $\delta_{j t}^{(L)}$ and $f^{\prime}\left(a_{j t}^{(L-1)}(p, q)\right)$.
SOLUTION: $\delta_{j t}^{(L-1)}(p, q)=\delta_{j t}^{(L)} f^{\prime}\left(a_{j t}^{(L-1)}(p, q)\right)$.

Problem 5 (24 points)

Suppose we have a database of feature vectors \vec{x}_{t} and associated labels $y_{t} \in\{-1,1\}$, where $1 \leq t \leq T$.

- Define \vec{z}_{t}, for this problem only, to be the signed feature vector, $\overrightarrow{z_{t}}=y_{t} \vec{x}_{t}$.
- Define \mathcal{W}_{∞} to be the set of vectors \vec{w} such that $\vec{w}^{T} \vec{z}_{t}>0$ for all t.
- Assume linearly separable classes, which means that \mathcal{W}_{∞} is not an empty set.
- Define $\vec{w}_{0}=\sum_{t=1}^{T} \vec{z}_{t}$

For each of the following statements, circle T if the statement is always true, circle F if the statement is sometimes false. If true, prove it. If false, disprove it (e.g., provide a training set $\left\{\vec{z}_{1}, \vec{z}_{2}\right\}$ that is linearly separable but disproves the claim; or you may use any other proof method).
(a) $\vec{w}_{0}^{T} \vec{w}_{\infty}>0$, for all $\vec{w}_{\infty} \in \mathcal{W}_{\infty}: T$

Proof:

$$
\vec{w}_{0}^{T} \vec{w}_{\infty}=\sum_{t=1}^{T} \vec{z}_{t}^{T} \vec{w}_{\infty}>0
$$

(b) $\vec{w}_{0}^{T} \vec{w}_{\infty} \geq 0$, for all $\vec{w}_{\infty} \in \mathcal{W}_{\infty}: T$

Proof: Part (a) implies part (b).
\qquad
(c) The vector \vec{w}_{0} is in the set $\mathcal{W}_{\infty}: F$?

Proof: A counter-example is the training dataset $\vec{z}_{1}=[15,1]^{T}, \vec{z}_{2}=[-1,1]^{T}$.
(d) $\vec{w} \in \mathcal{W}_{\infty}$ is unique (there is only one \vec{w} such that $\vec{w}^{T} \vec{z}_{t}>0$ for all t): F ?

Proof: A counter-example is the training dataset $\vec{z}_{1}=[15,1]^{T}, \vec{z}_{2}=[-1,1]^{T}$.
In the following two subsections, define

$$
\vec{w}_{n}=\vec{w}_{n-1}-\nabla_{\vec{w}_{n-1}} E_{n-1}
$$

where

$$
E_{n-1}=\sum_{t=1}^{T} \max \left(0,-\vec{w}_{n-1}^{T} \vec{z}_{t}\right)
$$

(e) $\vec{w}_{0}^{T} \nabla_{\vec{w}_{0}} E_{0} \leq 0: F$

Proof: $\nabla_{\vec{w}_{0}} E_{0}=-\sum_{t \in I} \overrightarrow{z_{t}}$, where $I=\left\{t: \vec{w}_{0}^{T} \vec{z}_{t}<0\right\}$, therefore

$$
\vec{w}_{0}^{T} \nabla_{\vec{w}_{0}} E_{0}=-\sum_{t \in I} \vec{w}_{0}^{T} \vec{z}_{t}>0
$$

(f) $\vec{w}_{1}^{T} \vec{w}_{\infty} \geq 0$ for all $\vec{w}_{\infty} \in \mathcal{W}_{\infty}: T$

Proof:

$$
\vec{w}_{\infty}^{T} \vec{w}_{1}=\vec{w}_{\infty}^{T}\left(\vec{w}_{0}+\sum_{t \in I} \vec{z}_{t}\right)=\sum_{t \notin I} \vec{w}_{\infty}^{T} \vec{z}_{t}+\sum_{t \in I} 2 \vec{w}_{\infty}^{T} \vec{z}_{t}>0
$$

