UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN
 Department of Electrical and Computer Engineering

ECE 544NA Pattern Recognition Fall 2014

EXAM 1 SOLUTIONS

Tuesday, October 7, 2014

Problem 1 (25 points)

X is a scalar random variable with the following probability distribution,

$$
p_{X \mid B}(x \mid b)=\left\{\begin{array}{ll}
b x^{-(b+1)} & x \geq 1 \\
0 & x<1
\end{array},\right.
$$

where b is another random variable, whose a prior distribution is

$$
p_{B}(b) \propto\left\{\begin{array}{ll}
b^{m} \mu^{-m(b+1)} & b>0 \\
0 & b \leq 0
\end{array},\right.
$$

and where μ and m are constant hyperparameters. You are given a database of i.i.d. training examples $\mathcal{X}=\left\{x_{1}, \ldots, x_{n}\right\}$. The MAP estimate of b is defined by $b_{M A P}=\arg \max p(b \mid \mathcal{X})$. Find $b_{M A P}$.

Solution

$$
b_{M A P}=\frac{m+n}{m \ln \mu+\sum_{i=1}^{n} \ln x_{i}}
$$

Problem 2 (25 points)

Discrete random variable H and continuous random variable V are jointly distributed as

$$
p_{H, V \mid \Theta}(p, v \mid \theta)=\frac{0.5}{\sqrt{2 \pi}} e^{-\frac{1}{2}\left(v-\mu_{h}\right)^{2}}, \quad h \in\{0,1\}, \quad-\infty<v<\infty
$$

where $\theta=\left[\mu_{0}, \mu_{1}\right]^{T}$ is a vector of parameters. You are given a database of i.i.d. examples of V, $\mathcal{V}=\left\{v_{1}, \ldots, v_{n}\right\}$, but you are not told what are the associated values of H. Define

$$
\gamma_{i}(h)=\frac{p_{H, V \mid \Theta}\left(h, v_{i} \mid \theta\right)}{p_{H, V \mid \Theta}\left(0, v_{i} \mid \theta\right)+p_{H, V \mid \Theta}\left(1, v_{i} \mid \theta\right)}
$$

Suppose there are two candidate parameter vectors, θ and $\tilde{\theta}=\left[\tilde{\mu}_{0}, \tilde{\mu}_{1}\right]^{T}$, and suppose that

$$
Q(\theta, \tilde{\theta})=\sum_{i=1}^{n} E\left[\ln p_{H, V \mid \tilde{\theta}}\left(H, v_{i} \mid \tilde{\theta}\right) \mid v_{i}, \theta\right]
$$

Find $\partial Q / \partial \tilde{\mu}_{0}$.
\qquad

Solution

$$
\frac{\partial Q}{\partial \tilde{\mu}_{0}}=\sum_{i=1}^{n} \gamma_{i}(0)\left(v_{i}-\tilde{\mu}_{0}\right)
$$

Problem 3 (25 points)

A two-layer neural net has MSE error criterion

$$
\mathcal{E}=\frac{1}{2} \sum_{i=1}^{n}\left\|z_{i}-t_{i}\right\|^{2}
$$

where $t_{i}=\left[t_{1 i}, \ldots, t_{r i}\right]^{T}$ is the target vector, and $z_{i}=\left[z_{1 i}, \ldots, z_{r i}\right]^{T}$ is the network output. z_{i} is computed as

$$
z_{k i}=g_{R L U}\left(w_{k}^{T} y_{i}\right)
$$

where $w_{k}=\left[w_{1 k}, \ldots, w_{q k}\right]^{T}$ is a weight vector, and $y_{i}=\left[y_{1 i}, \ldots, y_{q i}\right]^{T}$ is the hidden layer. y_{i} is computed as

$$
y_{j i}=g_{R L U}\left(v_{j}^{T} x_{i}\right)
$$

where $v_{j}=\left[v_{1 j}, \ldots, v_{p j}\right]^{T}$ is a weight vector, and $x_{i}=\left[x_{1 i}, \ldots, x_{p i}\right]^{T}$ is the network input. The rectified linear units are defined by

$$
g_{R L U}(a)=\max (0, a)
$$

Notice that, with these definitions,

$$
\frac{\partial \mathcal{E}}{\partial w_{k j}}=\sum_{i \in \mathcal{S}} \delta_{k i} y_{j i}
$$

for some set of indices \mathcal{S} which is a subset of $\{1, \ldots, n\}$. Find a definition of \mathcal{S} that permits you to write $\delta_{k i}=\left(z_{k i}-t_{k i}\right)$.

Solution

$$
\mathcal{S}=\left\{i: w_{k}^{T} y_{i}>0\right\}
$$

Problem 4 (25 points)

Second-order error approximations are defined by

$$
\mathcal{E}(w) \approx \frac{1}{2}\left(w-w^{*}\right)^{T} B\left(w-w^{*}\right)+\mathcal{E}_{\min }
$$

The line search algorithm is defined by

$$
\begin{aligned}
\alpha_{t} & =\arg \min _{\alpha} \mathcal{E}\left(w_{t}+\alpha d_{t}\right) \\
w_{t+1} & =w_{t}+\alpha_{t} d_{t}
\end{aligned}
$$

\qquad

Let v_{k} and λ_{k} be the eigenvectors and eigenvalues, respectively, of the matrix B, and define

$$
\begin{aligned}
r_{k t} & =v_{k}^{T}\left(w_{t}-w^{*}\right) \\
q_{k t} & =v_{k}^{T} d_{t}
\end{aligned}
$$

Express α_{t} as a function of only $r_{k t}, q_{k t}$, and λ_{k}, with no other variables in your answer.

Solution

$$
\alpha_{t}=-\frac{\sum_{k=1}^{N} \lambda_{k} q_{k t} r_{k t}}{\sum_{k=1}^{N} \lambda_{k} q_{k t}^{2}}
$$

