ECE544NA: PCA, python + numpy + TensorFlow tutorial

Raymond Yeh

University of Illinois at Urbana Champaign
yeh17@illinois.edu

September 13, 2016
(1) Given a dataset of $\left\{\vec{x}_{1}, \ldots \vec{x}_{N}\right\}$, where $\vec{x}_{i} \in \mathbb{R}^{d}$. We hope to reduce the dimension of the data to $m<d$, using linear transformations.
(2) Let $\left\{\overrightarrow{u_{1}}, \overrightarrow{u_{2}} \ldots \overrightarrow{u_{d}}\right\}$ be a set of orthonormal vectors, then without loss of generality, we can write, each $\overrightarrow{x_{i}}$ as

$$
\begin{equation*}
\vec{x}_{i}=\sum_{j=1}^{d} z_{j i} \vec{u}_{j} \tag{1}
\end{equation*}
$$

(3) Recall that the definition of orthonormal vectors,

$$
\begin{equation*}
\vec{u}_{j}^{\top} \vec{u}_{l}=\delta_{j l} \tag{2}
\end{equation*}
$$

where

$$
\delta_{j l}=\left\{\begin{array}{l}
0, j \neq 1 \tag{3}\\
1, j=1
\end{array}\right.
$$

(1) Given a \vec{x}_{i}, we can solve for $z_{j i}=\vec{u}_{j}^{\top} \vec{x}_{i}$
(2) We wish to reduce the dimension of the data to $m<d$, meaning we only use m coefficients z_{j}, and the remaining $d-m$ coefficients will be replaced with constants b_{j}, then the reduced dimension vector $\hat{\vec{x}}_{i}$ can be written as:

$$
\begin{equation*}
\hat{\vec{x}}_{i}=\sum_{j=1}^{M} z_{j i} \vec{u}_{j}+\sum_{j=m+1}^{d} b_{j} \vec{u}_{j} \tag{4}
\end{equation*}
$$

(3 Next, we will find the best approximation in the least squares sense. Meaning we minimize the following,

$$
\begin{equation*}
L_{m}=\frac{1}{2} \sum_{i=1}^{N}\left\|\vec{x}_{i}-\hat{\vec{x}_{i}}\right\|^{2} \tag{5}
\end{equation*}
$$

(1) Expand using Equation (4) and orthonormality Equation (2)

$$
\begin{equation*}
L_{m}=\frac{1}{2} \sum_{i=1}^{N}\left\|\vec{x}_{i}-\hat{\vec{x}}_{i}\right\|^{2}=\frac{1}{2} \sum_{i=1}^{N} \sum_{j=m+1}^{d}\left(z_{j i}-b_{j}\right)^{2} \tag{6}
\end{equation*}
$$

(2) Set the derivative of L_{m} with respect to b_{i} to zero, then

$$
\begin{equation*}
b_{j}=\frac{1}{N} \sum_{i=1}^{N} z_{j} i=\vec{u}_{j}^{\top}\left(\frac{1}{N} \sum_{i=1}^{N} \vec{x}_{i}\right)=\vec{u}_{j}^{\top} \overrightarrow{\vec{x}}^{\top} \tag{7}
\end{equation*}
$$

(3) Substitute b_{j} back in to Equation (5)

$$
\begin{equation*}
L_{m}=\frac{1}{2} \sum_{i=1}^{N} \sum_{j=m+1}^{d}\left(\vec{u}_{j}^{\top}\left(\vec{x}_{i}-\overline{\vec{x}}\right)\right)^{2} \tag{8}
\end{equation*}
$$

(1) Some rewriting:

$$
\begin{align*}
L_{m} & =\frac{1}{2} \sum_{i=1}^{N} \sum_{j=m+1}^{d}\left(\vec{u}_{j}^{\top}\left(\vec{x}_{i}-\overline{\vec{x}}\right)\right)^{2} \tag{9}\\
& =\frac{1}{2} \sum_{j=m+1}^{d} \sum_{i=1}^{N}\left(\vec{u}_{j}^{\top}\left(\vec{x}_{i}-\overline{\vec{x}}\right)\right)\left(\vec{u}_{j}^{\top}\left(\overrightarrow{x_{i}}-\overrightarrow{\vec{x}}\right)\right)^{\top} \tag{10}\\
& =\frac{1}{2} \sum_{j=m+1}^{d} \vec{u}_{j}^{\top}\left(\sum_{i=1}^{N}\left(\left(\vec{x}_{i}-\overrightarrow{\vec{x}}\right)\right)\left(\left(\overrightarrow{x_{i}}-\overrightarrow{\vec{x}}\right)\right)^{\top}\right) \vec{u}_{j} \tag{11}\\
& =\frac{1}{2} \sum_{j=m+1}^{d} \vec{u}_{j}^{\top} \sum \vec{u}_{j} \tag{12}
\end{align*}
$$

(1) Lastly, we will need to find the set of \vec{u}_{j} that minimize L_{m}. Minimum occurs when the basis satisfy,

$$
\begin{equation*}
\Sigma \vec{u}_{j}=\lambda_{j} \vec{u}_{j} \tag{13}
\end{equation*}
$$

, where $\left.\sum=\sum_{i=1}^{N}\left(\left(\vec{x}_{i}-\overline{\vec{x}}\right)\right)\left(\left(\overrightarrow{x_{i}}-\overline{\vec{x}}\right)\right)^{\top}\right)$ is the covariance matrix of the data set $\left\{\vec{x}_{i}\right\}$.
(2) Using the Equation (13) and L_{m} in Equation (12). The minimum is at

$$
\begin{equation*}
L_{m}=\sum_{j=m+1}^{d} \vec{u}_{j}^{\top} \sum \vec{u}_{j}=\sum_{j=m+1}^{d} \vec{u}_{j}^{\top} \lambda_{j} \vec{u}_{j}=\sum_{j=m+1}^{d} \lambda_{j} \tag{14}
\end{equation*}
$$

(3) Therefore, to minimize the L_{m}, we should remove dimension where \vec{u}_{j} has the smallest λ_{j}.
(1) Let $X=\left[\vec{x}_{1}, \vec{x}_{2}, \ldots, \vec{x}_{N}\right]$
(2) Compute $\overline{\vec{x}}=\frac{1}{N} \sum_{i=1}^{N} \vec{x}_{i}$
(0) Compute $\Sigma=(X-\overline{\vec{x}})(X-\overline{\vec{x}})^{\top}$
(1) Compute Eigenvectors and Eigenvalues of Σ, keep the m dimensions with the largest Eigenvalues.
(0. Lastly, to project examples on to the lower dimensional space, $\vec{z}=U^{\top} X$, where $U=\left[\overrightarrow{u_{1}}, \overrightarrow{u_{2}}, \ldots, \overrightarrow{u_{m}}\right]$, and \vec{u}_{j} are the Eigenvectors.
(1) PCA involves computing $X X^{\top}, X$ has the dimension of $d \times N$. When $d \gg N$, then compute Eigenvalues and Eigenvectors on $X^{\top} X$ instead to save computation.
(2) Claim: If \vec{v} is Eigenvector of $X^{\top} X$, then $\vec{u}=X \vec{v}$ is the Eigenvector of $X X^{\top}$.
(3) Proof:

$$
\begin{array}{r}
X^{\top} X \vec{v}=\lambda \vec{v} \\
X\left(X^{\top} X \vec{v}\right)=X(\lambda \vec{v}) \\
\left.\left(X X^{\top}\right)(X \vec{v})\right)=\lambda(X \vec{v}) \\
\left.\left(X X^{\top}\right)(\vec{u})\right)=\lambda(\vec{u}) \tag{18}
\end{array}
$$

Python, Numpy, TensorFlow Tutorial

Ipython Notebook will be posted on the website.

