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Support Vector Machine

©Q From last lecture, we formulated the SVM optimization as
w* = arg min ||w]|? (1)
w

subject to y;wTx; > 1,Vi € {1,..., N}

Q@ Consider the following example,
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Figure : Example by A. Zisserman



Slack Variable

@ Intuitively there should be a trade off between the margin and
classification accuracy.

Q Introduce a slack variable, &;, to control the trade off, by allowing
some examples to be within the margin or misclassified.

© Then the optimization problem becomes,

W' =arg min [[#]*+C) ¢ (2)
1

subject to y;wTx; > 1—¢&;,Vie {1,...,N}
@ Observe that when 0 < & < 1, x; is within the margin, and when
& > 1, the x; is misclassified.



Soft Margin SVM

O Observe that we can rewrite the constraint to & > 1 — y;wTXx;.
@ Combining with constraint & > 0, we can write
f,' = max(O, 1-— y,'VT/T)Z;)
© Finding w* becomes an unconstrained optimization problem.
w* = argmin ||w||* + CZ max(0,1 — y;wTx;) (3)
v i

@ Observe that the first term controls the margin, while the second
term controls the classification accuracy.



Supervised Learning Example

Let's say we want to predict whether a student will get an A on the
ECE544NA final exam. We have data from previous semester,

id | Hours studied | HW grade | Favorite animal | Final grade

1 10 90 dog A
2 20 100 elephant A+
3 0 50 zebra B

@ How to obtain the labels y;?
@ How to construct the feature vector X;?

© Which model to choose and how to optimize it?



Supervised Learning Problem

I o

Prediction ‘

Example

@ Training Examples D = (X1, 1), (%2, y2), ...(Xn5 yn)
@ Model g : R ~ {0, 1},

© Denote the prediction as y; = g(X;; w)

@ For binary classification, E[min,, 1[§! = y]]



Logistic Regression: Model

Q Given a training examples, D = (X1, y1), (%2, y2), ---(Xn, Yn), where
X €R9 and y € {0,1}. We hope to learn a function
g : R {0,1}, where g is a “good” predictor.

Q@ Recall, we have defined the logistic regression to have the form

_ 1

— =

Vi = g(xi;w) (4)

,where ¥; is the prediction given input %, and w € R is model
parameter.




Logistic Regression: Loss + Interpretation [

@ Why use a sigmoid function? (Hint: what is the range of y)
@ Assume P[Y =1|X =X]] = §i, and P[Y =0|X = X;] =1 — §;, then
we can compute the likelihood:

N N
[IPLY =vilx =1 =[]0 - (1 = 90— (5)
i=1

i=1

Then the log likelihood is:

N N
log(J[ PLY = yvilX = %1) =Y _ yi-log(9;) + (1 —yi) - log(1— ;) (6)
i=1 i=1



Logistic Regression: Loss + Interpretation [

O We want find the model parameters, w, such that the likelihood of
training examples, D, given the model is maximized.

Q@ Converting the likelihood maximization problem to a minimization
problem. Simply minimize the negative log likelihood.

N
w* = arg mMi/n(— Z}/i log(yi) + (1 —y;) - log(1 — ¥;)) (7)
i=1



Logistic Regression: Convexity

@ We will show that the negative log likelihood,

N
> vi-—log(9) + (1 - yi) - —log(1 — ) (8)
i=1
Jis convex with respect to w.
Q@ f is called convex if:

Vxi,x0,t € [0,1]: f(txa + (L — t)x3) < t x (X)) + (1 — t)f (%) (9)

O A twice differentiable function of several variables is convex on a
convex set if and only if its Hessian matrix is positive semidefinite.

@ Linear combination of convex functions with nonnegative coefficients
is also convex.

Q Therefore, showing — log(y;) and — log(1 — §;) are convex, proves the
overall negative log likelihood is convex.



Logistic Regression: Convexity

Q@ Recall,
—log(§) = —log({—_ =7z ) = log(1+e™™)  (10)
Q Gradient:
—e WX 1
—wTx; 2
W[IOg(]. +e ’)] = m CXi = (1 e W%, 1) Xij (11)
@ Hessian:
oW
Vo (—log()) = Va((§i—1)-%) = mﬂ (7 (A—y)%x]

(12)



Logistic Regression: Convexity

@ Convexity proof for —log(1 — yj) is left as an exercise.



Logistic Regression: Multi-Class

Q Given a training examples, D = (X1, y1), (%2, y2), ---(Xn, Yn), where
X €RI and y € {1,2,...K}. We want to estimate P[Y = 1|X], ...,
PlY = K|X].

©Q The multinomial logistic regression has the form

$i[1] exp(wy X;)
. . yil2] 1 exp(W; X;)
yi=g(xi; W) = = oK oTon : (17)
> exp(w] ;)

)“/,[K] exp(vT/,IX’,-)



Logistic Regression: Multi-Class

Q Assume P[Y = k|X = X;] = yi[k], then we can compute the
likelihood as follows:

N N K
[IPly = vilx =51 =[] vit*> =" (18)
i ik

Q The log likelihood is

N K . N K
> log(J[HIKM=H) = > "1y = k] -log(3ilk]) (19
i k i k

I



Review

@ Binary classification problem
Zero-one loss: 1[y;! = yi] (Intractable, not differentiable, not convex)

@ Linear regression
Square loss: ||y; — ¥i||?

© Logistic Regression
Log loss: —(y; - log(§i) + (1 — yi) - log(1 — ¥;)) Note: y € {0,1}
Log loss: hs In(1+ e, %) Note: t € {~1,1}, y = (1+1)/2
© Perceptron
Hinge loss: max (0, —y;¥:)
Q@ SVM
Hinge loss: max (0,1 — y;#)



Model Comparison
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Next Lecture

@ Principle Component Analysis
@ Python + Tensorflow Tutorial
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