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Support Vector Machine

1 From last lecture, we formulated the SVM optimization as

~w∗ = arg min
w
||~w ||2 (1)

subject to yi ~w
ᵀ~xi ≥ 1,∀i ∈ {1, ...,N}

2 Consider the following example,

Figure : Example by A. Zisserman



Slack Variable

1 Intuitively there should be a trade off between the margin and
classification accuracy.

2 Introduce a slack variable, ξi , to control the trade off, by allowing
some examples to be within the margin or misclassified.

3 Then the optimization problem becomes,

~w∗ = arg min
w ,ξi∈R+

||~w ||2 + C
∑
i

ξi (2)

subject to yi ~w
ᵀ~xi ≥ 1− ξi , ∀i ∈ {1, ...,N}

4 Observe that when 0 < ξi < 1, xi is within the margin, and when
ξi > 1, the xi is misclassified.



Soft Margin SVM

1 Observe that we can rewrite the constraint to ξi ≥ 1− yi ~w
ᵀ~xi .

2 Combining with constraint ξi ≥ 0, we can write
ξi = max(0, 1− yi ~w

ᵀ~xi )

3 Finding ~w∗ becomes an unconstrained optimization problem.

~w∗ = arg min
w
||~w ||2 + C

∑
i

max(0, 1− yi ~w
ᵀ~xi ) (3)

4 Observe that the first term controls the margin, while the second
term controls the classification accuracy.



Supervised Learning Example

Let’s say we want to predict whether a student will get an A on the
ECE544NA final exam. We have data from previous semester,

id Hours studied HW grade Favorite animal Final grade

1 10 90 dog A
2 20 100 elephant A+
3 0 50 zebra B
...

...
...

...
...

1 How to obtain the labels yi?

2 How to construct the feature vector ~xi?

3 Which model to choose and how to optimize it?



Supervised Learning Problem

1 Training Examples D = (~x1, y1), (~x2, y2), ...(~xN , yN)

2 Model g : Rd 7→ {0, 1},
3 Denote the prediction as ŷi = g(~xi ; ~w)

4 For binary classification, E[minw1[ŷ ! = y ]]



Logistic Regression: Model

1 Given a training examples, D = (~x1, y1), (~x2, y2), ...(~xN , yN), where
~x ∈ Rd , and y ∈ {0, 1}. We hope to learn a function
g : Rd 7→ {0, 1}, where g is a “good” predictor.

2 Recall, we have defined the logistic regression to have the form

ŷi = g(~xi ; ~w) =
1

1 + e−~wᵀ~xi
(4)

,where ŷi is the prediction given input ~xi , and ~w ∈ Rd is model
parameter.



Logistic Regression: Loss + Interpretation

1 Why use a sigmoid function? (Hint: what is the range of y)

2 Assume P[Y = 1|X = ~xi ] = ŷi , and P[Y = 0|X = ~xi ] = 1− ŷi , then
we can compute the likelihood:

N∏
i=1

P[Y = yi |X = ~xi ] =
N∏
i=1

(ŷi )
yi · (1− ŷi )

(1−yi ) (5)

Then the log likelihood is:

log(
N∏
i=1

P[Y = yi |X = ~xi ]) =
N∑
i=1

yi · log(ŷi )+(1−yi ) · log(1− ŷi ) (6)



Logistic Regression: Loss + Interpretation

1 We want find the model parameters, ~w , such that the likelihood of
training examples, D, given the model is maximized.

2 Converting the likelihood maximization problem to a minimization
problem. Simply minimize the negative log likelihood.

~w∗ = arg min
w

(−
N∑
i=1

yi · log(ŷi ) + (1− yi ) · log(1− ŷi )) (7)



Logistic Regression: Convexity

1 We will show that the negative log likelihood,

N∑
i=1

yi · −log(ŷi ) + (1− yi ) · −log(1− ŷi ) (8)

,is convex with respect to ~w .

2 f is called convex if:

∀~x1, ~x2, t ∈ [0, 1] : f (t ~x1 + (1− t)~x2) ≤ t ∗ f (~x1) + (1− t)f (~x2) (9)

3 A twice differentiable function of several variables is convex on a
convex set if and only if its Hessian matrix is positive semidefinite.

4 Linear combination of convex functions with nonnegative coefficients
is also convex.

5 Therefore, showing − log(ŷi ) and − log(1− ŷi ) are convex, proves the
overall negative log likelihood is convex.



Logistic Regression: Convexity

1 Recall,

− log(ŷi ) = − log(
1

1 + e−~wᵀ~xi
) = log(1 + e−~w

ᵀ~xi ) (10)

2 Gradient:

∇~w [log(1 + e−~w
ᵀ~xi )] =

−e−~wᵀ~xi

1 + e−~wᵀ~xi
· ~xi = (

1

1 + e−~wᵀ~xi
− 1) · ~xi (11)

3 Hessian:

∇2
~w (− log(ŷi )) = ∇~w ((ŷi−1)·~xi ) =

e−~w
ᵀ~xi

(1 + e−~wᵀ~xi )2
~x~xᵀ = (ŷi )(1−ŷi )~xi~xᵀi

(12)



Logistic Regression: Convexity

1 Prove Hessian is positive semi-definite: ∀~z ,

~zᵀ[∇2
~w (− log(ŷi ))~xᵀ]~z = ~zᵀ[(ŷi )(1− ŷi )~xi~x

ᵀ
i ]~z (13)

= (ŷi )(1− ŷi )(~zᵀ~x)(~xᵀ~z) (14)

= (ŷi )(1− ŷi )(~xᵀ~z)ᵀ(~xᵀ~z) (15)

= (ŷi )(1− ŷi )(~xᵀ~z)2 ≥ 0 (16)

2 Convexity proof for −log(1− ~yi ) is left as an exercise.



Logistic Regression: Multi-Class

1 Given a training examples, D = (~x1, y1), (~x2, y2), ...(~xN , yN), where
~x ∈ Rd , and y ∈ {1, 2, ...K}. We want to estimate P[Y = 1|X ], ...,
P[Y = K |X ].

2 The multinomial logistic regression has the form

~̂yi = g(~xi ;W ) =


ŷi [1]
ŷi [2]

...
ŷi [K ]

 =
1∑K

l exp(~wᵀ
l ~xi )


exp(~wᵀ

1~xi )
exp(~wᵀ

2~xi )
...

exp(~wᵀ
k~xi )

 (17)



Logistic Regression: Multi-Class

1 Assume P[Y = k|X = ~xi ] = ŷi [k], then we can compute the
likelihood as follows:

N∏
i

P[Y = yi |X = ~xi ] =
N∏
i

K∏
k

~̂yi [k]1[yi=k] (18)

2 The log likelihood is

N∑
i

log(
K∏
k

~̂yi [k]1[yi=k]) =
N∑
i

K∑
k

1[yi = k] · log(~̂yi [k]) (19)



Review

1 Binary classification problem
Zero-one loss: 1[yi ! = ŷi ] (Intractable, not differentiable, not convex)

2 Linear regression
Square loss: ||yi − ŷi ||2

3 Logistic Regression
Log loss: −(yi · log(ŷi ) + (1− yi ) · log(1− ŷi )) Note: y ∈ {0, 1}
Log loss: 1

ln(2) ln(1 + e−ti ·t̂i ) Note: t ∈ {−1, 1}, y = (1 + t)/2.

4 Perceptron
Hinge loss: max (0,−yi ŷi )

5 SVM
Hinge loss: max (0, 1− yi ŷi )



Model Comparison



Next Lecture

1 Principle Component Analysis

2 Python + Tensorflow Tutorial
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