ECE544NA: Logistic Regression and Multivariate Logistic Regression

Raymond Yeh

University of Illinois at Urbana Champaign
yeh17@illinois.edu
September 8, 2016

Overview

(1) Support Vector Machine
(2) Supervised Learning Example
(3) Logistic Regression
(4) Multinomial Logistic Regression
(5) Review
(1) From last lecture, we formulated the SVM optimization as

$$
\begin{equation*}
\vec{w}^{*}=\arg \min _{w}\|\vec{w}\|^{2} \tag{1}
\end{equation*}
$$

subject to $y_{i} \vec{w}^{\top} \vec{x}_{i} \geq 1, \forall i \in\{1, \ldots, N\}$
(2) Consider the following example,

Figure: Example by A. Zisserman
(1) Intuitively there should be a trade off between the margin and classification accuracy.
(2) Introduce a slack variable, ξ_{i}, to control the trade off, by allowing some examples to be within the margin or misclassified.
(3) Then the optimization problem becomes,

$$
\begin{equation*}
\vec{w}^{*}=\arg \min _{w, \xi_{i} \in \mathbf{R}^{+}}\|\vec{w}\|^{2}+C \sum_{i} \xi_{i} \tag{2}
\end{equation*}
$$

subject to $y_{i} \vec{w}^{\top} \vec{x}_{i} \geq 1-\xi_{i}, \forall i \in\{1, \ldots, N\}$
(- Observe that when $0<\xi_{i}<1, x_{i}$ is within the margin, and when $\xi_{i}>1$, the x_{i} is misclassified.
(1) Observe that we can rewrite the constraint to $\xi_{i} \geq 1-y_{i} \vec{w}^{\top} \overrightarrow{x_{i}}$.
(2) Combining with constraint $\xi_{i} \geq 0$, we can write $\xi_{i}=\max \left(0,1-y_{i} \vec{w}^{\top} \vec{x}_{i}\right)$
(3) Finding \vec{w}^{*} becomes an unconstrained optimization problem.

$$
\begin{equation*}
\vec{w}^{*}=\arg \min _{w}\|\vec{w}\|^{2}+C \sum_{i} \max \left(0,1-y_{i} \vec{w}^{\top} \vec{x}_{i}\right) \tag{3}
\end{equation*}
$$

(0) Observe that the first term controls the margin, while the second term controls the classification accuracy.

Supervised Learning Example

Let's say we want to predict whether a student will get an A on the ECE544NA final exam. We have data from previous semester,

id	Hours studied	HW grade	Favorite animal	Final grade
1	10	90	dog	A
2	20	100	elephant	A+
3	0	50	zebra	B
\vdots	\vdots	\vdots	\vdots	\vdots

(1) How to obtain the labels y_{i} ?
(2) How to construct the feature vector \vec{x}_{i} ?
(3) Which model to choose and how to optimize it?

Supervised Learning Problem

(1) Training Examples $D=\left(\vec{x}_{1}, y_{1}\right),\left(\vec{x}_{2}, y_{2}\right), \ldots\left(\vec{x}_{N}, y_{N}\right)$
(2) Model $g: \mathcal{R}^{d} \mapsto\{0,1\}$,
(3) Denote the prediction as $\hat{y}_{i}=g\left(\vec{x}_{i} ; \vec{w}\right)$
(- For binary classification, $\mathbf{E}\left[\min _{w} \mathbf{1}[\hat{y}!=y]\right]$

Logistic Regression: Model

(1) Given a training examples, $D=\left(\vec{x}_{1}, y_{1}\right),\left(\vec{x}_{2}, y_{2}\right), \ldots\left(\vec{x}_{N}, y_{N}\right)$, where $\vec{x} \in \mathcal{R}^{d}$, and $y \in\{0,1\}$. We hope to learn a function $g: \mathcal{R}^{d} \mapsto\{0,1\}$, where g is a "good" predictor.
(2) Recall, we have defined the logistic regression to have the form

$$
\begin{equation*}
\hat{y}_{i}=g\left(\overrightarrow{x_{i}} ; \vec{w}\right)=\frac{1}{1+e^{-\vec{w}^{\top} \overrightarrow{x_{i}}}} \tag{4}
\end{equation*}
$$

, where \hat{y}_{i} is the prediction given input \vec{x}_{i}, and $\vec{w} \in \mathcal{R}^{d}$ is model parameter.

Logistic Regression: Loss + Interpretation $\mathbf{\Lambda}_{\text {ILLINOIS }}$

(1) Why use a sigmoid function? (Hint: what is the range of y)
(2) Assume $P\left[Y=1 \mid X=\vec{x}_{i}\right]=\hat{y}_{i}$, and $P\left[Y=0 \mid X=\vec{x}_{i}\right]=1-\hat{y}_{i}$, then we can compute the likelihood:

$$
\begin{equation*}
\prod_{i=1}^{N} P\left[Y=y_{i} \mid X=\vec{x}_{i}\right]=\prod_{i=1}^{N}\left(\hat{y}_{i}\right)^{y_{i}} \cdot\left(1-\hat{y}_{i}\right)^{\left(1-y_{i}\right)} \tag{5}
\end{equation*}
$$

Then the log likelihood is:

$$
\begin{equation*}
\log \left(\prod_{i=1}^{N} P\left[Y=y_{i} \mid X=\vec{x}_{i}\right]\right)=\sum_{i=1}^{N} y_{i} \cdot \log \left(\hat{y}_{i}\right)+\left(1-y_{i}\right) \cdot \log \left(1-\hat{y}_{i}\right) \tag{6}
\end{equation*}
$$

Logistic Regression: Loss + Interpretation

(1) We want find the model parameters, \vec{w}, such that the likelihood of training examples, D, given the model is maximized.
(2) Converting the likelihood maximization problem to a minimization problem. Simply minimize the negative log likelihood.

$$
\begin{equation*}
\vec{w}^{*}=\arg \min _{w}\left(-\sum_{i=1}^{N} y_{i} \cdot \log \left(\hat{y}_{i}\right)+\left(1-y_{i}\right) \cdot \log \left(1-\hat{y}_{i}\right)\right) \tag{7}
\end{equation*}
$$

Logistic Regression: Convexity

(1) We will show that the negative log likelihood,

$$
\begin{equation*}
\sum_{i=1}^{N} y_{i} \cdot-\log \left(\hat{y}_{i}\right)+\left(1-y_{i}\right) \cdot-\log \left(1-\hat{y}_{i}\right) \tag{8}
\end{equation*}
$$

,is convex with respect to \vec{w}.
(2) f is called convex if:

$$
\begin{equation*}
\forall \overrightarrow{x_{1}}, \overrightarrow{x_{2}}, t \in[0,1]: f\left(t \overrightarrow{x_{1}}+(1-t) \overrightarrow{x_{2}}\right) \leq t * f\left(\vec{x}_{1}\right)+(1-t) f\left(\vec{x}_{2}\right) \tag{9}
\end{equation*}
$$

(3) A twice differentiable function of several variables is convex on a convex set if and only if its Hessian matrix is positive semidefinite.
(1) Linear combination of convex functions with nonnegative coefficients is also convex.
(0) Therefore, showing $-\log \left(\hat{y}_{i}\right)$ and $-\log \left(1-\hat{y}_{i}\right)$ are convex, proves the overall negative log likelihood is convex.

Logistic Regression: Convexity

(1) Recall,

$$
\begin{equation*}
-\log \left(\hat{y}_{i}\right)=-\log \left(\frac{1}{1+e^{-\vec{w}^{\top} \vec{x}_{i}}}\right)=\log \left(1+e^{-\vec{w}^{\top} \vec{x}_{i}}\right) \tag{10}
\end{equation*}
$$

(2) Gradient:

$$
\begin{equation*}
\nabla_{\vec{w}}\left[\log \left(1+e^{-\vec{w}^{\top} \vec{x}_{i}}\right)\right]=\frac{-e^{-\vec{w}^{\top} \vec{x}_{i}}}{1+e^{-\vec{w}^{\top} \vec{x}_{i}}} \cdot \vec{x}_{i}=\left(\frac{1}{1+e^{-\vec{w}^{\top} \vec{x}_{i}}}-1\right) \cdot \vec{x}_{i} \tag{11}
\end{equation*}
$$

(3) Hessian:

$$
\begin{equation*}
\nabla_{\vec{w}}^{2}\left(-\log \left(\hat{y}_{i}\right)\right)=\nabla_{\vec{w}}\left(\left(\hat{y}_{i}-1\right) \cdot \vec{x}_{i}\right)=\frac{e^{-\vec{w}^{\top} \vec{x}_{i}}}{\left(1+e^{-\vec{w}^{\top} \vec{x}_{i}}\right)^{2}} \vec{x} \vec{x}^{\top}=\left(\hat{y}_{i}\right)\left(1-\hat{y}_{i}\right) \vec{x}_{i} \vec{x}_{i}^{\top} \tag{12}
\end{equation*}
$$

Logistic Regression: Convexity

(1) Prove Hessian is positive semi-definite: $\forall \vec{z}$,

$$
\begin{align*}
\vec{z}^{\top}\left[\nabla_{\vec{w}}^{2}\left(-\log \left(\hat{y}_{i}\right)\right) \vec{x}^{\top}\right] \vec{z} & =\vec{z}^{\top}\left[\left(\hat{y}_{i}\right)\left(1-\hat{y}_{i}\right) \vec{x}_{i} \vec{x}_{i}^{\top}\right] \vec{z} \tag{13}\\
& =\left(\hat{y}_{i}\right)\left(1-\hat{y}_{i}\right)\left(\vec{z}^{\top} \vec{x}\right)\left(\vec{x}^{\top} \vec{z}\right) \tag{14}\\
& =\left(\hat{y}_{i}\right)\left(1-\hat{y}_{i}\right)\left(\vec{x}^{\top} \vec{z}\right)^{\top}\left(\vec{x}^{\top} \vec{z}\right) \tag{15}\\
& =\left(\hat{y}_{i}\right)\left(1-\hat{y}_{i}\right)\left(\vec{x}^{\top} \vec{z}\right)^{2} \geq 0 \tag{16}
\end{align*}
$$

(2) Convexity proof for $-\log \left(1-\overrightarrow{y_{i}}\right)$ is left as an exercise.

Logistic Regression: Multi-Class

(1) Given a training examples, $D=\left(\vec{x}_{1}, y_{1}\right),\left(\vec{x}_{2}, y_{2}\right), \ldots\left(\vec{x}_{N}, y_{N}\right)$, where $\vec{x} \in \mathcal{R}^{d}$, and $y \in\{1,2, \ldots K\}$. We want to estimate $P[Y=1 \mid X], \ldots$, $P[Y=K \mid X]$.
(2) The multinomial logistic regression has the form

$$
\hat{\vec{y}}_{i}=g\left(\vec{x}_{i} ; W\right)=\left[\begin{array}{c}
\hat{y}_{i}[1] \tag{17}\\
\hat{y}_{i}[2] \\
\vdots \\
\hat{y}_{i}[K]
\end{array}\right]=\frac{1}{\sum_{l}^{K} \exp \left(\vec{w}_{l}^{\top} \vec{x}_{i}\right)}\left[\begin{array}{c}
\exp \left(\vec{w}_{1}^{\top} \vec{x}_{i}\right) \\
\exp \left(\vec{w}_{2}^{\top} \vec{x}_{i}\right) \\
\vdots \\
\exp \left(\vec{w}_{k}^{\top} \vec{x}_{i}\right)
\end{array}\right]
$$

Logistic Regression: Multi-Class

(1) Assume $P\left[Y=k \mid X=\vec{x}_{i}\right]=\hat{y}_{i}[k]$, then we can compute the likelihood as follows:

$$
\begin{equation*}
\prod_{i}^{N} P\left[Y=y_{i} \mid X=\vec{x}_{i}\right]=\prod_{i}^{N} \prod_{k}^{K} \hat{\vec{y}}_{i}[k]^{1\left[y_{i}=k\right]} \tag{18}
\end{equation*}
$$

(2) The log likelihood is

$$
\begin{equation*}
\sum_{i}^{N} \log \left(\prod_{k}^{K} \hat{\vec{y}}_{i}[k]^{1\left[y_{i}=k\right]}\right)=\sum_{i}^{N} \sum_{k}^{K} \mathbf{1}\left[y_{i}=k\right] \cdot \log \left(\hat{\bar{y}_{i}}[k]\right) \tag{19}
\end{equation*}
$$

(1) Binary classification problem

Zero-one loss: $\mathbf{1}\left[y_{i}!=\hat{y_{i}}\right]$ (Intractable, not differentiable, not convex)
(2) Linear regression

Square loss: $\left\|y_{i}-\hat{y}_{i}\right\|^{2}$
(0) Logistic Regression

Log loss: $-\left(y_{i} \cdot \log \left(\hat{y}_{i}\right)+\left(1-y_{i}\right) \cdot \log \left(1-\hat{y}_{i}\right)\right)$ Note: $y \in\{0,1\}$ Log loss: $\frac{1}{\ln (2)} \ln \left(1+e_{i}^{-t_{i} \cdot \hat{t}}\right)$ Note: $t \in\{-1,1\}, y=(1+t) / 2$.
(1) Perceptron

Hinge loss: $\max \left(0,-y_{i} \hat{y}_{i}\right)$
(0) SVM

Hinge loss: $\max \left(0,1-y_{i} \hat{y}_{i}\right)$

Model Comparison

Next Lecture

(1) Principle Component Analysis
(2) Python + Tensorflow Tutorial

