UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN

Department of Electrical and Computer Engineering

ECE 544NA Pattern Recognition
 Fall 2016

SAMPLE EXAM 3 SOLUTIONS

- This is a CLOSED BOOK exam. You may use one page, both sides, of handwritten notes.
- There are a total of 100 points in the exam. Plan your work accordingly.
- You must SHOW YOUR WORK to get full credit.

Problem	Score
1	
2	
3	
4	
5	
6	
Total	

Name: \qquad
\qquad

Problem 1 (20 points)

An RNN has output $\hat{y}(t)$ defined for $0 \leq t<\infty$, input $x(t)$, error E_{t}, network weights a_{t} and b_{t}, and scalar nonlinearity $g(\cdot)$ related by

$$
\begin{align*}
\hat{y}(t) & =g\left(a_{t} \hat{y}(t-1)+b_{t} x(t)\right) \tag{1}\\
E_{t} & =\frac{1}{2}(y(t)-\hat{y}(t))^{2} \tag{2}\\
a_{0}=b_{0} & =0 \tag{3}\\
a_{t+1} & =a_{t}-0.02 \sum_{k=0}^{t} \frac{\partial E_{t}}{\partial a_{k}} \tag{4}
\end{align*}
$$

(a) Prove that, even if E_{t} is bounded, $\sum_{k=0}^{t} \frac{\partial E_{t}}{\partial a_{k}}$ might grow without bound.

Solution:

For convenience, define $g^{\prime}(t)=\frac{\partial g\left(a_{t} \hat{y}(t-1)+b_{t} x(t)\right)}{\partial a_{t} \hat{y}(t-1)+b_{t} x(t)}$. Then

$$
\begin{aligned}
\sum_{k=0}^{t} \frac{\partial E_{t}}{\partial a_{k}} & =(y(t)-\hat{y}(t)) \sum_{k=0}^{t} \frac{\partial \hat{y}(t)}{\partial a_{k}} \\
& =(y(t)-\hat{y}(t)) \sum_{k=0}^{t} \hat{y}(t-1-k) g^{\prime}(t) \prod_{\ell=1}^{k} a_{t-\ell} g^{\prime}(t-\ell) \\
& \rightarrow \infty \text { as } t \rightarrow \infty
\end{aligned}
$$

where the last line holds if the geometric mean of $\left|a_{t-\ell} g^{\prime}(t-\ell)\right|$ is greater than 1 .
(b) Modify the update equation to

$$
a_{t+1}=\max \left(-a_{M A X}, \min \left(a_{M A X}, a_{t}-0.02 \sum_{k=0}^{t} \frac{\partial E_{t}}{\partial a_{k}}\right)\right)
$$

Find sufficient conditions on $a_{M A X}$ and $g(\cdot)$ such that $\sum_{k=0}^{t} \frac{\partial E_{t}}{\partial a_{k}}$ is guaranteed to remain bounded as $t \rightarrow \infty$.
Solution: It is sufficient if we can guarantee that $\left|a_{t-\ell} g^{\prime}(t-\ell)\right|<1$ at all times. This is achieved if

$$
a_{M A X}<\frac{1}{\max _{z}\left|\frac{d g}{d z}\right|}
$$

Problem 2 (10 points)

Consider a two-layer RNN, one node per layer, with input $x(t)$, hidden layer $h(t)$, output $\hat{y}(t)$, error E_{t}, scalar nonlinearity $g(\cdot)$, and coefficients a, b, α, β related by

$$
\begin{align*}
h(t) & =g(a h(t-1)+b x(t)) \tag{5}\\
\hat{y}(t) & =(\alpha \hat{y}(t-1)+\beta h(t)) \tag{6}\\
E_{t} & =y(t) \log (\hat{y}(t))+(1-y(t)) \log (1-\hat{y}(t)) \tag{7}
\end{align*}
$$

Find $\frac{\partial E_{t}}{\partial \beta}$ and $\frac{\partial E_{t}}{\partial b}$.
\qquad

Solution:

For convenience, define $g^{\prime}(t)=\frac{\partial g(a h(t-1)+b x(t))}{\partial a h(t-1)+b x(t)}$. Then

$$
\begin{aligned}
& \frac{\partial E_{t}}{\partial \beta}=\left(\frac{y(t)}{\hat{y}(t)}-\frac{1-y(t)}{1-\hat{y}(t)}\right) \frac{\partial \hat{y}(t)}{\partial \beta} \\
&=\left(\frac{y(t)}{\hat{y}(t)}-\frac{1-y(t)}{1-\hat{y}(t)}\right)\left(h(t)+\alpha \frac{\partial \hat{y}(t-1)}{\partial \beta}\right) \\
&=\left(\frac{y(t)}{\hat{y}(t)}-\frac{1-y(t)}{1-\hat{y}(t)}\right) \sum_{k=0}^{t} \alpha^{k} h(t-k) \\
& \frac{\partial E_{t}}{\partial b}=\left(\frac{y(t)}{\hat{y}(t)}-\frac{1-y(t)}{1-\hat{y}(t)}\right)\left(\beta \frac{\partial h(t)}{\partial b}+\alpha \frac{\partial \hat{y}(t-1)}{d b}\right) \\
&=\left(\frac{y(t)}{\hat{y}(t)}-\frac{1-y(t)}{1-\hat{y}(t)}\right) \beta \sum_{k=0}^{t} \alpha^{k} \frac{\partial h(t-k)}{\partial b} \\
&=\left(\frac{y(t)}{\hat{y}(t)}-\frac{1-y(t)}{1-\hat{y}(t)}\right) \beta \sum_{k=0}^{t} \alpha^{k} g^{\prime}(t-k)\left(x(t-k)+a \frac{\partial h(t-k-1)}{\partial b}\right) \\
&=\left(\frac{y(t)}{\hat{y}(t)}-\frac{1-y(t)}{1-\hat{y}(t)}\right) \beta \sum_{k=0}^{t} \alpha^{k} \sum_{\ell=0}^{t-k} a^{\ell} x(t-k-\ell) \prod_{m=0}^{\ell} g^{\prime}(t-k-m)
\end{aligned}
$$

Problem 3 (20 points)

A simplified LSTM with inputs $x(t)$ is defined by

$$
\begin{align*}
c(t) & =i(t) x(t)+m(t) c(t-1) \tag{8}\\
i(t) & =u\left(w^{i} x(t)+b^{i}\right) \tag{9}\\
m(t) & =u\left(w^{m} x(t)+b^{m}\right) \tag{10}
\end{align*}
$$

where $u(\cdot)$ is the unit step function, defined as $u(z)=\frac{1}{2}(\operatorname{sign}(z)+1)$.
(a) Choose w^{i}, b^{i}, w^{m} and b^{m} so that

$$
c(t)= \begin{cases}x(t) & x(t)>2 \tag{11}\\ c(t-1) & x(t)<2\end{cases}
$$

Solution: This is solved by $w^{i}=1, w^{m}=-1, b^{i}=-2, b^{m}=2$.
(b) Suppose $x(t)=s(t)+v(t)$, where $s(t)$ is the desired signal,

$$
s(t)= \begin{cases}10 & t=0 \\ 0 & \text { otherwise }\end{cases}
$$

and $v(t)$ is a random noise process with distribution given by

$$
\Phi(z)=\operatorname{Pr}\{v(t) \leq z\}=\int_{-\infty}^{z} \frac{1}{\sqrt{2 \pi}} e^{-\frac{1}{2} u^{2}} d u
$$

\qquad

Define the "memory" of the network you designed in part (a) to be the expected number of time steps for which $c(t)=x(0)$. Find the memory of your network, as a function of $\Phi(z)$.

Solution: Let T be the number of time steps for which $c(t)=x(0)$; the "memory" is $E[T]$.

- $T=0$ if $10+v(0)<2$, i.e., if $v(0)<-8$; this happens with probability $p_{0}=\Phi(-8)$.
- $T=1$ if $v(0)>-8$ and $v(1)>2$; this happens with probability $p_{0} p_{1}$ where $p_{1}=$ $1-\Phi(2)$.
- $T=t$ with probability $p_{0}\left(1-p_{1}\right)^{t-1} p_{1}$.

The expected value $E[T]$ is therefore

$$
E[T]=\sum_{t=1}^{\infty} t\left(1-p_{0}\right)\left(1-p_{1}\right)^{t-1} p_{1}
$$

We can solve this sum by noting that

$$
\sum_{t=0}^{\infty}\left(1-p_{1}\right)^{t}=\frac{1}{p_{1}}
$$

Differentiating both sides by p_{1}, we find that

$$
\sum_{t=0}^{\infty} t\left(1-p_{1}\right)^{t-1}=\frac{1}{p_{1}^{2}}
$$

Therefore

$$
E[T]=\frac{1-p_{0}}{p_{1}}=\frac{1-\Phi(-8)}{1-\Phi(2)}
$$

Problem 4 (25 points)

Define $c_{t}=i$ to be the event that the $i^{\text {th }}$ coin is flipped at time t, where $1 \leq i \leq 3$. The possible observations are $x_{t} \in\{H, T\}$. Two of the coins are unfair; the heads probabilities of the three coins are given by $p\left(x_{t}=H \mid c_{t}=i\right)=i / 4$. Coin $c_{1}=1$ is always the first one flipped. After each coin flip, the coin is changed with probability $\frac{1}{2}$; if the coin is changed, both of the other coins are equally likely.
(a) What is $p\left(c_{1}=1, c_{2}=1, c_{3}=2\right)$?

Solution:

$$
p\left(c_{1}=1, c_{2}=1, c_{3}=2\right)=\pi_{1} a_{11} a_{12}=(1)\left(\frac{1}{2}\right)\left(\frac{1}{4}\right)=\frac{1}{8}
$$

(b) What is the probability of getting three heads in a row?

Solution: Define $\alpha_{1}(i)=\pi_{i} b_{1}\left(x_{1}\right)$. Then

$$
\alpha_{1}(k)= \begin{cases}\frac{1}{4} & k=1 \\ 0 & \text { otherwise }\end{cases}
$$

Define $\alpha_{t}(j)=\sum_{i} \alpha_{t-1}(i) a_{i j} b_{j}\left(x_{t}\right)$. Then

$$
\alpha_{2}(i)=\left\{\begin{array}{lll}
\left(\frac{1}{4}\right)\left(\frac{1}{2}\right)\left(\frac{1}{4}\right)=\frac{1}{32} & i=1 \\
\left(\frac{1}{4}\right)\left(\frac{1}{4}\right)\left(\frac{1}{2}\right)=\frac{1}{32} & i=2 \\
\left(\frac{1}{4}\right)\left(\frac{1}{4}\right)\left(\frac{3}{4}\right)=\frac{3}{64} & i=3
\end{array}\right.
$$

and

$$
\alpha_{3}(j)=\left\{\begin{array}{lll}
\left(\left(\frac{1}{32}\right)\left(\frac{1}{2}\right)+\left(\frac{1}{32}\right)\left(\frac{1}{4}\right)+\left(\frac{3}{64}\right)\left(\frac{1}{4}\right)\right)\left(\begin{array}{l}
\left.\frac{1}{4}\right)=\frac{9}{1224}
\end{array}\right. & j=1 \\
\left(\left(\frac{1}{32}\right)\left(\frac{1}{4}\right)+\left(\frac{1}{32}\right)\left(\frac{1}{2}\right)+\left(\frac{3}{64}\right)\left(\frac{1}{4}\right)\right)\left(\left(\frac{1}{2}\right)=\frac{9}{512}\right. & j=2 \\
\left(\left(\frac{1}{32}\right)\left(\frac{1}{4}\right)+\left(\frac{1}{32}\right)\left(\frac{1}{4}\right)+\left(\frac{3}{64}\right)\left(\frac{1}{2}\right)\right)\left(\frac{3}{4}\right)=\frac{15}{512} & j=3
\end{array}\right.
$$

Adding them all up, we get $p\left(x_{1}=H, x_{2}=H, x_{3}=H\right)=\frac{57}{1024}$.
(c) Suppose you observe two heads in a row. You know that the first flip was coin $c_{1}=1$. Which coin was most probably the second one flipped?

Solution:

$$
\begin{aligned}
& p\left(c_{2}=1, H H\right)=\left(\frac{1}{4}\right)\left(\frac{1}{2}\right)\left(\frac{1}{4}\right)=\frac{1}{32} \\
& p\left(c_{2}=2, H H\right)=\left(\frac{1}{4}\right)\left(\frac{1}{4}\right)\left(\frac{1}{2}\right)=\frac{1}{32} \\
& p\left(c_{2}=3, H H\right)=\left(\frac{1}{4}\right)\left(\frac{1}{4}\right)\left(\frac{3}{4}\right)=\frac{3}{64}
\end{aligned}
$$

So the most likely second coin is $c_{2}=3$.

Problem 5 (15 points)

Suppose that an HMM has 6 states with transition probabilities arranged into a matrix A, whose $(i, j)^{\text {th }}$ element is $a_{i j}=\operatorname{Pr}\left\{s_{t}=j \mid s_{t-1}=i\right\}$. The $a_{i j}$ are initialized randomly, but because of a programming error, a_{34} is accidentally set to $a_{34}=0$. New transition probabilities $\hat{a}_{i j}$ are estimated as

$$
\begin{align*}
\hat{a}_{i j} & =\frac{\sum_{t=1}^{T} \xi_{t}(i, j)}{\sum_{t=1}^{T} \sum_{j=1}^{6} \xi_{t}(i, j)} \tag{12}\\
\xi_{t}(i, j) & =p\left(s_{t-1}=i, s_{t}=j \mid A, X\right) \tag{13}
\end{align*}
$$

where $X=\left[x_{1}, \ldots, x_{T}\right]$ is a sequence of observations whose details you do not need to know. Prove that, under these circumstances, $\hat{a}_{34}=0$.

Solution:

$$
\xi_{t}(3,4)=\frac{p\left(X, s_{t-1}=3, s_{t}=4 \mid A\right)}{p(X \mid A)}=\alpha_{t-1}(3) a_{34} b_{4}\left(x_{t}\right) \beta_{t}(4)=0
$$

Therefore $\sum_{t=1}^{T} \xi_{t}(3,4)=0$, therefore $\hat{a}_{34}=0$.

Problem 6 (10 points)

A NN-HMM hybrid has known observations $X=\left[x_{1}, \ldots, x_{T}\right]$, and unknown state sequence $S=\left[s_{1}, \ldots, s_{T}\right]$. Its initialization probabilities are $\pi_{i}=\operatorname{Pr}\left\{s_{1}=i\right\}$, and its transition probabilities are $a_{i j}=\operatorname{Pr}\left\{s_{t}=j \mid s_{t-1}=i\right\}$. Its observation probabilities are computed by the softmax
\qquad
layer of a neural network; they are $b_{j}\left(x_{t}\right)=\operatorname{Pr}\left\{s_{t}=j \mid x_{t}\right\} / \operatorname{Pr}\left\{s_{t}=j\right\}$. Consider the following algorithm:

$$
\begin{align*}
\alpha_{1}(i) & =\pi_{i} b_{i}\left(x_{1}\right), \quad 1 \leq i \leq N \tag{14}\\
\alpha_{t+1}(j) & =\sum_{i=1}^{N} \alpha_{t}(i) a_{i j} b_{j}\left(x_{t}\right), \quad 1 \leq i, j \leq N, \quad 1 \leq t \leq T-1 \tag{15}\\
P_{\text {final }} & =\sum_{j=1}^{N} \alpha_{T}(j) \tag{16}
\end{align*}
$$

Express $P_{\text {final }}=\ldots$, where the right-hand side of the equation contains some sort of arithmetic combination of joint, conditional, and marginal probability mass functions of the random variables x_{t}. No other variables should appear on the right-hand side.
Solution: First let's use the definition of conditional probability to rewrite $b_{j}\left(x_{t}\right)$ in a more useful form:

$$
b_{j}\left(x_{t}\right)=\frac{\operatorname{Pr}\left\{s_{t}=j \mid x_{t}\right\}}{\operatorname{Pr}\left\{s_{t}=j\right\}}=\frac{p\left(x_{t} \mid s_{t}=j\right)}{p\left(x_{t}\right)}
$$

Then

$$
\alpha_{1}(i)=\pi_{i} b_{i}\left(x_{1}\right)=\frac{p\left(x_{1}, s_{1}=i\right)}{p\left(x_{1}\right)}
$$

Continuing to $t=2$, we have

$$
\begin{aligned}
\alpha_{2}(j) & =\sum_{i=1}^{N} \frac{p\left(x_{1}, s_{1}=i\right)}{p\left(x_{1}\right)} a_{i j} \frac{p\left(x_{2} \mid s_{2}=j\right)}{p\left(x_{2}\right)} \\
& =\sum_{i=1}^{N} \frac{p\left(x_{1}, s_{1}=i, s_{2}=j, x_{2}\right)}{p\left(x_{1}\right) p\left(x_{2}\right)} \\
& =\frac{p\left(x_{1}, x_{2}, s_{2}=j\right)}{p\left(x_{1}\right) p\left(x_{2}\right)}
\end{aligned}
$$

Continuing, we find that

$$
P_{\text {final }}=\frac{p\left(x_{1}, x_{2}, \ldots, x_{T}\right)}{p\left(x_{1}\right) p\left(x_{2}\right) \ldots p\left(x_{T}\right)}
$$

