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SAMPLE EXAM 3 SOLUTIONS

e This isa CLOSED BOOK exam. You may use one page, both sides, of handwritten

notes.
e There are a total of 100 points in the exam. Plan your work accordingly.

e You must SHOW YOUR WORK to get full credit.

Problem | Score
1

O = W o

Total

Name:




NAME: Sample Exam 3 Page 2

Problem 1 (20 points)

An RNN has output g(t) defined for 0 < ¢t < oo, input x(t), error E;, network weights ay
and b, and scalar nonlinearity g(-) related by

g(t) = g(ay(t—1)+ bex(t)) (1)
Eo= St~ i) (2)
aozbg = 0 (3)
Qg1 = ap— 002225: (4)

(a) Prove that, even if E; is bounded, > ;_ 0% 8E’f might grow without bound.

Solution:

0g(ar§(t—1)+bex(t)) Then

For convenience, define ¢'(t) = Dari (=) Thra(t) "

k
= W) =9 D9t =1=k)g @) [Jaegt = 0)
(=1
— o0 as t— 00
where the last line holds if the geometric mean of |a;—gg'(t — ¢)| is greater than 1.

(b) Modify the update equation to

oF
G¢+1 = Max <—aMAX,rn1n (aMAX,at 0022 a@}:))

Find sufficient conditions on aprax and g(-) such that S} _ 0% 8Et is guaranteed to remain
bounded as t — oo.

Solution: It is sufficient if we can guarantee that |a;_sg'(t — £)| < 1 at all times. This is

achieved if )

apaAx < ———
maxz|d |

Problem 2 (10 points)

Consider a two-layer RNN, one node per layer, with input z(t), hidden layer h(t), output
9(t), error Ey, scalar nonlinearity g(-), and coefficients a, b, o, 8 related by

h(t) = g(ah(t—1)+ba(t)) (5)
g(t) = (ag(t —1)+ Bh(1)) (6)
By = y(t)log(y(t)) + (1 —y(1)) log(1 —4(t)) (7)

ind 9Et OE;
Find L and o
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Solution:

For convenience, define ¢'(t) = %W. Then

0B, _ (y(t)_l—y(t))aw)
op g(t) 1-9(@)) 0B
y(t)  1—y(t) L2t —1)
(5~ =5 (0= ™55
y(t) 1-y1)\ ¢
- (58 =10) 2 athit=k)
OF, _ (y(t) 1—y(t)\ (,0h(t) & 9j(t—1)
o (@(t)‘l—:a(t))(ﬁ T )
_ (90 _1y(0) N wOR(E—R)
= (5 1—@@))5;:0 b
o (y®) 1=y N ok Oh(t —k —1)
- (@(t)‘l—w))ﬁk0““*“(“““” )
ORI TONPE SV © S
= (59 1—@<t>>5k0 2 clalt=k = J[ otk =m)
Problem 3 (20 points)
A simplified LSTM with inputs x(¢) is defined by
c(t) = i(t)x.(t)—l—m(‘t)c(t—l) (8)
i(t) = u(w'z(t)+b) 9)
m(t) = u(wmz(t)+0") (10)

where u(-) is the unit step function, defined as u(z) = § (sign(z) + 1).

(a) Choose w’, b’, w™ and b™ so that

[ z(t) x(t) > 2
()= { (t—1) x(t) <2 (1)

o)

Solution: This is solved by v’ = 1, w™ = —1, b' = =2, b"™ = 2.

(b) Suppose z(t) = s(t) + v(t), where s(t) is the desired signal,

10 t=0
s(t) = { 0 otherwise

and v(t) is a random noise process with distribution given by

1 1,2

O(z) =Pr{v(t) <z} = /Z 271_675“ du
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Y

Define the “memory” of the network you designed in part (a) to be the expected number
of time steps for which ¢(¢) = z(0). Find the memory of your network, as a function of
D(2).
Solution: Let T' be the number of time steps for which ¢(¢) = x(0); the “memory” is
E[T].

e T'=0if 10+ v(0) < 2, i.e., if v(0) < —8; this happens with probability py = ®(—8).

e T'=1if v(0) > —8 and v(1) > 2; this happens with probability pop; where p; =
1—®(2).

e T =t with probability po(1 — p1)!~!p;.

The expected value E[T] is therefore

We can solve this sum by noting that

d (1—p)f = pl

i 1

Il
o

Differentiating both sides by p1, we find that

Zt(l —pl)t_l =

t=0

Pw‘ =

Therefore
_l—po 1-2(-8)

ElT] pr 192

Problem 4 (25 points)

Define ¢; = i to be the event that the i coin is flipped at time ¢, where 1 < i < 3. The
possible observations are x; € {H,T}. Two of the coins are unfair; the heads probabilities of
the three coins are given by p(z; = H|c; = i) = i/4. Coin ¢; = 1 is always the first one flipped.
After each coin flip, the coin is changed with probability %; if the coin is changed, both of the
other coins are equally likely.

(a) What is p(c1 = 1,¢c0 = 1,¢c3 =2)7
Solution: ]
2

D=3

pler =1,c0 =1,¢c3 =2) = majiae = (1)(

(b) What is the probability of getting three heads in a row?
Solution: Define (i) = m;b1(z1). Then

k=1
otherwise

ar (k) :{ é
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Define ay(j) = >, au—1(7)ai;jbj(x:). Then

M H = i=1
as(i) = (%) (%) (3)=9 i=2
(1) @) () =a i=3
and
(@@ @GN () = =1
ws) =1 (B @ @y =2 -2
((32) (1) + (*) (1) + () @) E) = =3

Adding them all up, we get p(x1 = H,z2 = H,23 = H) = 1557

(¢) Suppose you observe two heads in a row. You know that the first flip was coin ¢; = 1.
Which coin was most probably the second one flipped?

ples =1, HH) = (i) (;) (i) _ 3%
pley =2, HH) = G) (i) (;) _ %
plcy =3,HH) = <i) (i) (i) _ 634

So the most likely second coin is ¢ = 3.

Solution:

Problem 5 (15 points)

Suppose that an HMM has 6 states with transition probabilities arranged into a matrix
A, whose (i,7)™ element is a;; = Pr{s; = j|st—1 =4}. The a;; are initialized randomly, but
because of a programming error, a3y is accidentally set to agy = 0. New transition probabilities
a;; are estimated as

23:1 gt(la]) (12)

Qs T 6 —
>oi-1 Zj:l &(4,J)
&(i,7) = plsi—1 =1,s = j|A, X) (13)
where X = [z1,...,27] is a sequence of observations whose details you do not need to know.
Prove that, under these circumstances, azq = 0.

Solution:
p(X, st—1 = 3,5 = 4|A)

p(X|4)
Therefore Zthl &:(3,4) = 0, therefore ags = 0.

(3,4) = = a;—1(3)azabs(z¢) i (4) =0

Problem 6 (10 points)

A NN-HMM hybrid has known observations X = [z1,...,z7], and unknown state sequence
S = [s1,...,sr|. Its initialization probabilities are m; = Pr {s; = i}, and its transition probabil-
ities are a;; = Pr{s; = j|s;—1 = i}. Its observation probabilities are computed by the softmax
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layer of a neural network; they are b;(z;) = Pr{s; = jla} /Pr{s; = j}. Consider the following
algorithm:

al(i) = Wibi(l‘l), 1 S ) S N (14)
a1(j) = Y a(daibi(zy), 1<i,j<N, 1<t<T-1 (15)
N
Pfinat = Y ar(j) (16)
i=1
Express Pfipnas = ..., where the right-hand side of the equation contains some sort of arith-

metic combination of joint, conditional, and marginal probability mass functions of the random
variables z;. No other variables should appear on the right-hand side.

Solution: First let’s use the definition of conditional probability to rewrite b;(z;) in a more
useful form:

b (1) = Pris; =jlz.} _ plzils = j)

Pris;=j}  p(x)
Then ( )
. p\r1,51 =1
a1(t) = mbi(x) = —————=
10 =) =)
Continuing to t = 2, we have
al p(z1,81 =1)  p(x2]ss = j)
. 17 1 = 2|82 =
o ,
N .
_ Z p($1731 0,82 = J,%2)
1 p(x1)p(x2)
_ p(w1, 22,50 = )
p(z1)p(w2)
Continuing, we find that
p(z1,z2,...,27)

Frinat = e Vp(a) - plar)



