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Problem 1 (20 points)

An RNN has output ŷ(t) defined for 0 ≤ t < ∞, input x(t), error Et, network weights at
and bt, and scalar nonlinearity g(·) related by

ŷ(t) = g (atŷ(t− 1) + btx(t)) (1)

Et =
1

2
(y(t)− ŷ(t))2 (2)

a0 = b0 = 0 (3)

at+1 = at − 0.02

t∑
k=0

∂Et
∂ak

(4)

(a) Prove that, even if Et is bounded,
∑t

k=0
∂Et
∂ak

might grow without bound.

Solution:

For convenience, define g′(t) = ∂g(atŷ(t−1)+btx(t))
∂atŷ(t−1)+btx(t) . Then

t∑
k=0

∂Et
∂ak

= (y(t)− ŷ(t))

t∑
k=0

∂ŷ(t)

∂ak

= (y(t)− ŷ(t))

t∑
k=0

ŷ(t− 1− k)g′(t)

k∏
`=1

at−`g
′(t− `)

→ ∞ as t→∞

where the last line holds if the geometric mean of |at−`g′(t− `)| is greater than 1.

(b) Modify the update equation to

at+1 = max

(
−aMAX ,min

(
aMAX , at − 0.02

t∑
k=0

∂Et
∂ak

))

Find sufficient conditions on aMAX and g(·) such that
∑t

k=0
∂Et
∂ak

is guaranteed to remain
bounded as t→∞.

Solution: It is sufficient if we can guarantee that |at−`g′(t− `)| < 1 at all times. This is
achieved if

aMAX <
1

maxz |dgdz |

Problem 2 (10 points)

Consider a two-layer RNN, one node per layer, with input x(t), hidden layer h(t), output
ŷ(t), error Et, scalar nonlinearity g(·), and coefficients a, b, α, β related by

h(t) = g (ah(t− 1) + bx(t)) (5)

ŷ(t) = (αŷ(t− 1) + βh(t)) (6)

Et = y(t) log(ŷ(t)) + (1− y(t)) log(1− ŷ(t)) (7)

Find ∂Et
∂β and ∂Et

∂b .
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Solution:

For convenience, define g′(t) = ∂g(ah(t−1)+bx(t))
∂ah(t−1)+bx(t) . Then

∂Et
∂β

=

(
y(t)

ŷ(t)
− 1− y(t)

1− ŷ(t)

)
∂ŷ(t)

∂β

=

(
y(t)

ŷ(t)
− 1− y(t)

1− ŷ(t)

)(
h(t) + α

∂ŷ(t− 1)

∂β

)
=

(
y(t)

ŷ(t)
− 1− y(t)

1− ŷ(t)

) t∑
k=0

αkh(t− k)

∂Et
∂b

=

(
y(t)

ŷ(t)
− 1− y(t)

1− ŷ(t)

)(
β
∂h(t)

∂b
+ α

∂ŷ(t− 1)

db

)
=

(
y(t)

ŷ(t)
− 1− y(t)

1− ŷ(t)

)
β

t∑
k=0

αk
∂h(t− k)

∂b

=

(
y(t)

ŷ(t)
− 1− y(t)

1− ŷ(t)

)
β

t∑
k=0

αkg′(t− k)

(
x(t− k) + a

∂h(t− k − 1)

∂b

)

=

(
y(t)

ŷ(t)
− 1− y(t)

1− ŷ(t)

)
β

t∑
k=0

αk
t−k∑
`=0

a`x(t− k − `)
∏̀
m=0

g′(t− k −m)

Problem 3 (20 points)

A simplified LSTM with inputs x(t) is defined by

c(t) = i(t)x(t) +m(t)c(t− 1) (8)

i(t) = u
(
wix(t) + bi

)
(9)

m(t) = u (wmx(t) + bm) (10)

where u(·) is the unit step function, defined as u(z) = 1
2 (sign(z) + 1).

(a) Choose wi, bi, wm and bm so that

c(t) =

{
x(t) x(t) > 2
c(t− 1) x(t) < 2

(11)

Solution: This is solved by wi = 1, wm = −1, bi = −2, bm = 2.

(b) Suppose x(t) = s(t) + v(t), where s(t) is the desired signal,

s(t) =

{
10 t = 0
0 otherwise

and v(t) is a random noise process with distribution given by

Φ(z) = Pr {v(t) ≤ z} =

∫ z

−∞

1√
2π
e−

1
2
u2du
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Define the “memory” of the network you designed in part (a) to be the expected number
of time steps for which c(t) = x(0). Find the memory of your network, as a function of
Φ(z).

Solution: Let T be the number of time steps for which c(t) = x(0); the “memory” is
E[T ].

• T = 0 if 10 + v(0) < 2, i.e., if v(0) < −8; this happens with probability p0 = Φ(−8).

• T = 1 if v(0) > −8 and v(1) > 2; this happens with probability p0p1 where p1 =
1− Φ(2).

• T = t with probability p0(1− p1)t−1p1.

The expected value E[T ] is therefore

E[T ] =

∞∑
t=1

t(1− p0)(1− p1)t−1p1

We can solve this sum by noting that

∞∑
t=0

(1− p1)t =
1

p1

Differentiating both sides by p1, we find that

∞∑
t=0

t(1− p1)t−1 =
1

p21

Therefore

E[T ] =
1− p0
p1

=
1− Φ(−8)

1− Φ(2)

Problem 4 (25 points)

Define ct = i to be the event that the ith coin is flipped at time t, where 1 ≤ i ≤ 3. The
possible observations are xt ∈ {H,T}. Two of the coins are unfair; the heads probabilities of
the three coins are given by p(xt = H|ct = i) = i/4. Coin c1 = 1 is always the first one flipped.
After each coin flip, the coin is changed with probability 1

2 ; if the coin is changed, both of the
other coins are equally likely.

(a) What is p(c1 = 1, c2 = 1, c3 = 2)?

Solution:

p(c1 = 1, c2 = 1, c3 = 2) = π1a11a12 = (1)(
1

2
)(

1

4
) =

1

8

(b) What is the probability of getting three heads in a row?

Solution: Define α1(i) = πib1(x1). Then

α1(k) =

{
1
4 k = 1
0 otherwise
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Define αt(j) =
∑

i αt−1(i)aijbj(xt). Then

α2(i) =


(
1
4

) (
1
2

) (
1
4

)
= 1

32 i = 1(
1
4

) (
1
4

) (
1
2

)
= 1

32 i = 2(
1
4

) (
1
4

) (
3
4

)
= 3

64 i = 3

and

α3(j) =


((

1
32

) (
1
2

)
+
(

1
32

) (
1
4

)
+
(

3
64

) (
1
4

)) (
1
4

)
= 9

1024 j = 1((
1
32

) (
1
4

)
+
(

1
32

) (
1
2

)
+
(

3
64

) (
1
4

)) (
1
2

)
= 9

512 j = 2((
1
32

) (
1
4

)
+
(

1
32

) (
1
4

)
+
(

3
64

) (
1
2

)) (
3
4

)
= 15

512 j = 3

Adding them all up, we get p(x1 = H,x2 = H,x3 = H) = 57
1024 .

(c) Suppose you observe two heads in a row. You know that the first flip was coin c1 = 1.
Which coin was most probably the second one flipped?

Solution:

p(c2 = 1, HH) =

(
1

4

)(
1

2

)(
1

4

)
=

1

32

p(c2 = 2, HH) =

(
1

4

)(
1

4

)(
1

2

)
=

1

32

p(c2 = 3, HH) =

(
1

4

)(
1

4

)(
3

4

)
=

3

64

So the most likely second coin is c2 = 3.

Problem 5 (15 points)

Suppose that an HMM has 6 states with transition probabilities arranged into a matrix
A, whose (i, j)th element is aij = Pr {st = j|st−1 = i}. The aij are initialized randomly, but
because of a programming error, a34 is accidentally set to a34 = 0. New transition probabilities
âij are estimated as

âij =

∑T
t=1 ξt(i, j)∑T

t=1

∑6
j=1 ξt(i, j)

(12)

ξt(i, j) = p(st−1 = i, st = j|A,X) (13)

where X = [x1, . . . , xT ] is a sequence of observations whose details you do not need to know.
Prove that, under these circumstances, â34 = 0.
Solution:

ξt(3, 4) =
p(X, st−1 = 3, st = 4|A)

p(X|A)
= αt−1(3)a34b4(xt)βt(4) = 0

Therefore
∑T

t=1 ξt(3, 4) = 0, therefore â34 = 0.

Problem 6 (10 points)

A NN-HMM hybrid has known observations X = [x1, . . . , xT ], and unknown state sequence
S = [s1, . . . , sT ]. Its initialization probabilities are πi = Pr {s1 = i}, and its transition probabil-
ities are aij = Pr {st = j|st−1 = i}. Its observation probabilities are computed by the softmax
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layer of a neural network; they are bj(xt) = Pr {st = j|xt} /Pr {st = j}. Consider the following
algorithm:

α1(i) = πibi(x1), 1 ≤ i ≤ N (14)

αt+1(j) =

N∑
i=1

αt(i)aijbj(xt), 1 ≤ i, j ≤ N, 1 ≤ t ≤ T − 1 (15)

Pfinal =

N∑
j=1

αT (j) (16)

Express Pfinal = . . ., where the right-hand side of the equation contains some sort of arith-
metic combination of joint, conditional, and marginal probability mass functions of the random
variables xt. No other variables should appear on the right-hand side.
Solution: First let’s use the definition of conditional probability to rewrite bj(xt) in a more
useful form:

bj(xt) =
Pr {st = j|xt}

Pr {st = j}
=
p(xt|st = j)

p(xt)

Then

α1(i) = πibi(x1) =
p(x1, s1 = i)

p(x1)

Continuing to t = 2, we have

α2(j) =

N∑
i=1

p(x1, s1 = i)

p(x1)
aij

p(x2|s2 = j)

p(x2)

=
N∑
i=1

p(x1, s1 = i, s2 = j, x2)

p(x1)p(x2)

=
p(x1, x2, s2 = j)

p(x1)p(x2)

Continuing, we find that

Pfinal =
p(x1, x2, . . . , xT )

p(x1)p(x2) . . . p(xT )


