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Problem 1 (25 points)

In this problem, the observation x ∈ [0, 1] is a real number drawn from a uniform distribu-
tion,

px(x) =

{
1 0 ≤ x ≤ 1,
0 otherwise

(1)

The true label of each datum is y = [x > θ], where [·] is the unit indicator function, and θ is an
unknown threshold parameter. Suppose that the prior distribution for θ is also uniform:

pθ(θ) =

{
1 0 ≤ θ ≤ 1,
0 otherwise

(2)

The hypothesis space is the set of all threshold functions,

H =
{
h(x) =

[
x > θ̂

]
: θ̂ ∈ [0, 1]

}
The feasible set after training on a set of n labeled data is the set of all hypotheses that do not
contradict any of the training data:

Hn = {h : h ∈ H, h(xi) = yi ∀ 1 ≤ i ≤ n}

The worst-case risk, after n training data, is

Rn = max
h∈Hn

Pr {y 6= h(x)}

(a) Assume that xi are drawn at random according to Eq. 1. Notice that, in this case, Rn is
a random variable. Define its cumulative distribution function to be

Fn(ε) = Pr {Rn ≥ ε}

Find Fn(ε) as a function of ε. You may assume that ε ≤ θ ≤ 1− ε.
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(b) Suppose that you are allowed to use the following active learning algorithm.

(i) Set the base to b1 = 0, the step to s1 = 0.5.

(ii) For 1 ≤ i ≤ n:

i. Set xi = bi + si. Ask a teacher to label this token, giving the true value of yi.

ii. If yi == 0, set the base to bi+1 = xi, else bi+1 = bi.

iii. si+1 = si/2.

Rn is still a random variable (because of Eq. 2), but now it has a much reduced range.
Find Fn(ε).
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Problem 2 (25 points)

K-means clustering finds a set of modes, θ = {µ1, . . . , µK}, in order to minimize

E =
n∑
i=1

‖xi − µki‖
2

where ki is the cluster assignment of the ith training datum. The K-means algorithm progres-
sively reduces E by iteratively alternating between Eq. 3 and Eq. 4:

ki = arg min ‖xi − µk‖ (3)

µk =
1

nk

∑
i:ki=k

xi (4)

where nk is the number of data for which ki = k.

(a) Prove that Eq. 4 minimizes E for fixed values of ki.
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(b) Suppose that you have a semi-supervised learning problem in which there are n labeled
data (x1 through xn), and u unlabeled data (xn+1 through xn+u). Suppose that you
decide to minimize the joint criterion

F =
n+u∑
i=1

‖xi − µki‖
2 + λ

n∑
i=1

[yi 6= y(ki)]

nk
(5)

where [·] is the unit indicator function, λ > 0 is some real-valued regularizing parameter,
and y(k) is the majority class label of cluster k defined as

y(k) = argmaxy
∑
i:ki=k

[yi = y]

It is possible to create a version of the K-means algorithm that progressively minimizes
Eq. 5. Indeed, Eq. 4 reduces F in exactly the same way that it minimizes E . Eq. 3,
however, needs to be modified.

Suppose that each training datum has a previous cluster affiliation, k̂i. Your goal is to
create a new cluster affiliation ki that changes (ki 6= k̂i) if and only if a change will reduce
F , thus

ki = arg minF s.t. kj = k̂j for all j 6= i

Find the condition under which ki 6= k̂i. Your condition will depend on the value of λ.
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Problem 3 (25 points)

Suppose that you have a problem characterized by non-negative real observations, that is,
v ∈ <+. Consider a mixture exponential hypothesis:

pv(v) =

{ ∑m
h=1 chλhe

−λhv v ≥ 0
0 v < 0

(6)

where λh > 0 is the rate of the hth exponential, ch ≥ 0, and 1 =
∑m

h=1 ch.
Define the trainable parameters θ = {c1, λ1, . . . , cm, λm}, and define the posterior probabil-

ity
γi(h; θ) = ph|v(h|vi, θ)

(a) Write γi(h; θ) as an explicit function of vi and of the trainable parameters.
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(b) Define

Q(θ, θ̂) =
n∑
i=1

∑
h

γi(h; θ̂) ln ph,v(h, vi|θ)

In terms of γi(h; θ̂) and vi, find the value of λh that maximizes Q(θ, θ̂).
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Problem 4 (25 points)

Consider a neural network defined by input vectors xi = [xi1, . . . , xip]
T , targets ti =

[ti1, . . . , tir]
T , and by the following transformations

aik =

p∑
j=1

ukjxij (7)

yik = f(aik) (8)

bi` =

q∑
k=1

v`kyik (9)

zi` = g(bi`) (10)

E =

n∑
i=1

r∑
`=1

ti` ln

(
ti`
zi`

)
(11)

(a) Define

εi` =
∂E
∂bi`

Express εi` as an explicit function of ti`, zi`, and the derivative function g′(bi`). You may
assume that ti` ≥ 0, zi` > 0, and 0 ln 0 ≡ 0.
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(b) Find
∂E
∂v`k

and
∂E
∂ukj

as explicit functions of εi`, yik, xij , and v`k. If you need to define any other intermediate
variables, make certain that you define them clearly.


