UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN

Department of Electrical and Computer Engineering

ECE 544NA Pattern Recognition
Fall 2014

EXAM 3

Monday, December 15, 2014

- This is a CLOSED BOOK exam. You may use two pages, both sides, of notes.
- There are a total of 100 points in the exam. Plan your work accordingly.
- You must SHOW YOUR WORK to get full credit.

Problem	Score
1	
2	
3	
4	
Total	

Name: \qquad
\qquad

Problem 1 (25 points)

In this problem, the observation $x \in[0,1]$ is a real number drawn from a uniform distribution,

$$
p_{x}(x)= \begin{cases}1 & 0 \leq x \leq 1, \tag{1}\\ 0 & \text { otherwise }\end{cases}
$$

The true label of each datum is $y=[x>\theta]$, where $[\cdot]$ is the unit indicator function, and θ is an unknown threshold parameter. Suppose that the prior distribution for θ is also uniform:

$$
p_{\theta}(\theta)= \begin{cases}1 & 0 \leq \theta \leq 1, \tag{2}\\ 0 & \text { otherwise }\end{cases}
$$

The hypothesis space is the set of all threshold functions,

$$
\mathcal{H}=\{h(x)=[x>\hat{\theta}]: \quad \hat{\theta} \in[0,1]\}
$$

The feasible set after training on a set of n labeled data is the set of all hypotheses that do not contradict any of the training data:

$$
\mathcal{H}_{n}=\left\{h: \quad h \in \mathcal{H}, \quad h\left(x_{i}\right)=y_{i} \forall 1 \leq i \leq n\right\}
$$

The worst-case risk, after n training data, is

$$
R_{n}=\max _{h \in \mathcal{H}_{n}} \operatorname{Pr}\{y \neq h(x)\}
$$

(a) Assume that x_{i} are drawn at random according to Eq. 1. Notice that, in this case, R_{n} is a random variable. Define its cumulative distribution function to be

$$
F_{n}(\epsilon)=\operatorname{Pr}\left\{R_{n} \geq \epsilon\right\}
$$

Find $F_{n}(\epsilon)$ as a function of ϵ. You may assume that $\epsilon \leq \theta \leq 1-\epsilon$.
\qquad
(b) Suppose that you are allowed to use the following active learning algorithm.
(i) Set the base to $b_{1}=0$, the step to $s_{1}=0.5$.
(ii) For $1 \leq i \leq n$:
i. Set $x_{i}=b_{i}+s_{i}$. Ask a teacher to label this token, giving the true value of y_{i}.
ii. If $y_{i}==0$, set the base to $b_{i+1}=x_{i}$, else $b_{i+1}=b_{i}$.
iii. $s_{i+1}=s_{i} / 2$.
R_{n} is still a random variable (because of Eq. 2), but now it has a much reduced range. Find $F_{n}(\epsilon)$.
\qquad

Problem 2 (25 points)

K-means clustering finds a set of modes, $\theta=\left\{\mu_{1}, \ldots, \mu_{K}\right\}$, in order to minimize

$$
\mathcal{E}=\sum_{i=1}^{n}\left\|x_{i}-\mu_{k_{i}}\right\|^{2}
$$

where k_{i} is the cluster assignment of the $i^{\text {th }}$ training datum. The K-means algorithm progressively reduces \mathcal{E} by iteratively alternating between Eq. 3 and Eq. 4:

$$
\begin{align*}
k_{i} & =\arg \min \left\|x_{i}-\mu_{k}\right\| \tag{3}\\
\mu_{k} & =\frac{1}{n_{k}} \sum_{i: k_{i}=k} x_{i} \tag{4}
\end{align*}
$$

where n_{k} is the number of data for which $k_{i}=k$.
(a) Prove that Eq. 4 minimizes \mathcal{E} for fixed values of k_{i}.
\qquad
(b) Suppose that you have a semi-supervised learning problem in which there are n labeled data (x_{1} through x_{n}), and u unlabeled data (x_{n+1} through x_{n+u}). Suppose that you decide to minimize the joint criterion

$$
\begin{equation*}
\mathcal{F}=\sum_{i=1}^{n+u}\left\|x_{i}-\mu_{k_{i}}\right\|^{2}+\lambda \sum_{i=1}^{n} \frac{\left[y_{i} \neq y\left(k_{i}\right)\right]}{n_{k}} \tag{5}
\end{equation*}
$$

where $[\cdot]$ is the unit indicator function, $\lambda>0$ is some real-valued regularizing parameter, and $y(k)$ is the majority class label of cluster k defined as

$$
y(k)=\operatorname{argmax}_{y} \sum_{i: k_{i}=k}\left[y_{i}=y\right]
$$

It is possible to create a version of the K-means algorithm that progressively minimizes Eq. 5. Indeed, Eq. 4 reduces \mathcal{F} in exactly the same way that it minimizes \mathcal{E}. Eq. 3, however, needs to be modified.
Suppose that each training datum has a previous cluster affiliation, \hat{k}_{i}. Your goal is to create a new cluster affiliation k_{i} that changes $\left(k_{i} \neq \hat{k}_{i}\right)$ if and only if a change will reduce \mathcal{F}, thus

$$
k_{i}=\arg \min \mathcal{F} \quad \text { s.t. } k_{j}=\hat{k}_{j} \text { for all } j \neq i
$$

Find the condition under which $k_{i} \neq \hat{k}_{i}$. Your condition will depend on the value of λ.

Problem 3 (25 points)

Suppose that you have a problem characterized by non-negative real observations, that is, $v \in \Re^{+}$. Consider a mixture exponential hypothesis:

$$
p_{v}(v)= \begin{cases}\sum_{h=1}^{m} c_{h} \lambda_{h} e^{-\lambda_{h} v} & v \geq 0 \tag{6}\\ 0 & v<0\end{cases}
$$

where $\lambda_{h}>0$ is the rate of the $h^{\text {th }}$ exponential, $c_{h} \geq 0$, and $1=\sum_{h=1}^{m} c_{h}$.
Define the trainable parameters $\theta=\left\{c_{1}, \lambda_{1}, \ldots, c_{m}, \lambda_{m}\right\}$, and define the posterior probability

$$
\gamma_{i}(h ; \theta)=p_{h \mid v}\left(h \mid v_{i}, \theta\right)
$$

(a) Write $\gamma_{i}(h ; \theta)$ as an explicit function of v_{i} and of the trainable parameters.
(b) Define

$$
Q(\theta, \hat{\theta})=\sum_{i=1}^{n} \sum_{h} \gamma_{i}(h ; \hat{\theta}) \ln p_{h, v}\left(h, v_{i} \mid \theta\right)
$$

In terms of $\gamma_{i}(h ; \hat{\theta})$ and v_{i}, find the value of λ_{h} that maximizes $Q(\theta, \hat{\theta})$.
\qquad

Problem 4 (25 points)

Consider a neural network defined by input vectors $x_{i}=\left[x_{i 1}, \ldots, x_{i p}\right]^{T}$, targets $t_{i}=$ $\left[t_{i 1}, \ldots, t_{i r}\right]^{T}$, and by the following transformations

$$
\begin{align*}
a_{i k} & =\sum_{j=1}^{p} u_{k j} x_{i j} \tag{7}\\
y_{i k} & =f\left(a_{i k}\right) \tag{8}\\
b_{i \ell} & =\sum_{k=1}^{q} v_{\ell k} y_{i k} \tag{9}\\
z_{i \ell} & =g\left(b_{i \ell}\right) \tag{10}\\
\mathcal{E} & =\sum_{i=1}^{n} \sum_{\ell=1}^{r} t_{i \ell} \ln \left(\frac{t_{i \ell}}{z_{i \ell}}\right) \tag{11}
\end{align*}
$$

(a) Define

$$
\epsilon_{i \ell}=\frac{\partial \mathcal{E}}{\partial b_{i \ell}}
$$

Express $\epsilon_{i \ell}$ as an explicit function of $t_{i \ell}, z_{i \ell}$, and the derivative function $g^{\prime}\left(b_{i \ell}\right)$. You may assume that $t_{i \ell} \geq 0, z_{i \ell}>0$, and $0 \ln 0 \equiv 0$.
(b) Find

$$
\frac{\partial \mathcal{E}}{\partial v_{\ell k}} \text { and } \frac{\partial \mathcal{E}}{\partial u_{k j}}
$$

as explicit functions of $\epsilon_{i \ell}, y_{i k}, x_{i j}$, and $v_{\ell k}$. If you need to define any other intermediate variables, make certain that you define them clearly.

