# UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN <br> Department of Electrical and Computer Engineering 

## ECE 544NA Pattern Recognition <br> Fall 2016

## Homework in lieu of EXAM 2

## Due Thursday, November 10, 2016 by 7:00pm

Feel free to work with other students, and/or to seek help from Raymond and Prof. Mark. Homework should be submitted in your own handwriting, to Professor Mark's mailbox in Beckman Institute by 7:00pm, Thursday November 10. Note that the doors of the Beckman Institute are locked every night at roughly 7:00pm, so if you arrive at the last minute, you may not be able to submit on time.

## Problem 1 (EM and GMM)

DLR77 $=($ Dempster, Laird and Rubin, 1977 $)$. JB97 $=($ Jeff Bilmes, 1997 $)$. This problem will use the notation of DLR77. Thus, in this problem, all vectors are row vectors rather than column vectors. The vector $y$ is observed, $z$ is hidden, and $x=[y, z]$. Equations in DLR77 will be referred to by numbers as (DLRn.nn).
(a) The fundamental problem of maximum likelihood parameter estimation is to find a set of parameters, $\phi$, that will maximize the log likelihood of the data, the quantity $L(\phi)$ defined in Eq. (DLR2.4). When some of the variables are hidden, maximum likelihood parameters can be found by maximizing $Q\left(\phi^{\prime} \mid \phi\right)$ from Eq. (DLR2.17) instead.
Let's substitute the pair of variables $(y, z)$ everywhere that the paper uses $x$. Notice that with this substitution, Eq. (DLR2.5) becomes

$$
k(z \mid y, \phi)=k(y, z \mid y, \phi)=f(x \mid \phi) / g(y \mid \phi)
$$

Expand Eq. (DLR2.17) as

$$
Q\left(\phi^{\prime} \mid \phi\right)=\int k(z \mid y, \phi) \log f\left(z, y \mid \phi^{\prime}\right) d z
$$

Define the cross-entropy between $\phi$ and $\phi^{\prime}$ to be

$$
\begin{equation*}
H\left(\phi^{\prime} \mid \phi\right)=\int k(z \mid y, \phi) \log k\left(z \mid y, \phi^{\prime}\right) d z \tag{1}
\end{equation*}
$$

Use Eq. (DLR1.1), Eq. (DLR2.4), Eq. (DLR2.5), Eq. (DLR2.17), and Eq. (1) to find $Q\left(\phi^{\prime} \mid \phi\right)$ in terms of $L\left(\phi^{\prime}\right)$ and $H\left(\phi^{\prime} \mid \phi\right)$.
(b) Recall that the goal of maximum likelihood estimation is to find parameters that maximize $L(\phi)$. Suppose we start with one set of parameters, $\phi^{(p)}$, and we want to find another set, $\phi^{(p+1)}$, such that $L\left(\phi^{(p+1)}\right)>L\left(\phi^{(p)}\right)$.
Use Eq. (DLR3.3), and your result from part (a), to show that

$$
\begin{equation*}
L\left(\phi^{(p+1)}\right)-L\left(\phi^{(p)}\right) \geq Q\left(\phi^{(p+1)} \mid \phi^{(p)}\right)-Q\left(\phi^{(p)} \mid \phi^{(p)}\right) \tag{2}
\end{equation*}
$$

Given Eq. (2), how should we choose $\phi^{(p+1)}$, and why?
(c) Use Eq. (DLR2.1) to find $Q\left(\phi^{(p+1)} \mid \phi^{(p)}\right)-Q\left(\phi^{(p)} \mid \phi^{(p)}\right)$ for distributions in the exponential family. Your answer should include terms related to $\log a\left(\phi^{(p)}\right), \log a\left(\phi^{(p+1)}\right), \phi^{(p+1)}, \phi^{(p)}$, and the term $t^{(p) T}$ defined in Eq. (DLR2.2).
(d) Use Eq. (DLR2.11) and your answer to the previous section to prove that $Q\left(\phi \mid \phi^{(p)}\right)$ is maximized by the value of $\phi$ specified in Eq. (DLR2.3).
(e) Use Eqs. (DLR1.1), (DLR2.1), (DLR2.5), and (DLR2.7) to derive (DLR2.8). Hint: you may find this easier if you substitute $(y, z)$ in place of $x$ everywhere that $x$ occurs. Thus, for example, the region of integration $\mathcal{X}\left(y_{0}\right)$ can be defined as $\mathcal{X}\left(y_{0}\right)=\left\{y, z: y=y_{0}\right\}$
(f) Consider the case of a GMM. Define $y$ to be a set of $N$ i.i.d. observation vectors, each of which is $M$-dimensional:

$$
y=\left\{\vec{y}_{1}, \ldots, \vec{y}_{N}\right\}, \quad \vec{y}_{n} \in \Re^{M}
$$

Let $z$ be the matching set of hidden variables, each of which is just an integer $1 \leq z_{n} \leq K$, thus

$$
z=\left\{z_{1}, \ldots, z_{N}\right\}, \quad z_{n} \in\{1, \ldots, K\}
$$

Finally, define their joint pdf to be

$$
\begin{equation*}
f(y, z \mid \phi)=\prod_{n=1}^{N} c_{z_{n}} \frac{1}{\operatorname{det}\left(2 \pi \Sigma_{z_{n}}\right)} \exp \left(-\vec{r}_{z_{n}}\left(\left(\vec{y}_{n}-\vec{\mu}_{z_{n}}\right) \otimes\left(\vec{y}_{n}-\vec{\mu}_{z_{n}}\right)\right)^{T}\right) \tag{3}
\end{equation*}
$$

where the following special notation has been defined. First, $\vec{r}_{z}$ is a $1 \times M^{2}$ vector, created by listing all of the elements of the $M \times M$ square matrix $\Sigma_{z}^{-1}$ into one long row vector (for example, in a pseudo-Matlab notation, we could write $r=$ Sigmainverse(:)'). Second, $\vec{y}_{n} \otimes \vec{y}_{n}$ is the tensor product vector, defined as follows. If $\vec{y}_{n}=\left[y_{n 1}, \ldots, y_{n M}\right]$, then

$$
\vec{y}_{n} \otimes \vec{y}_{n}=\left[y_{n 1} \vec{y}_{n}, y_{n 2} \vec{y}_{n}, \ldots, y_{n M} \vec{y}_{n}\right]
$$

Finally, you may find it useful to define the unit indicator function as

$$
\llbracket p \rrbracket= \begin{cases}1 & p \text { is true }  \tag{4}\\ 0 & p \text { is false }\end{cases}
$$

Show that the GMM PDF (Eq. (3)) is a member of the exponential family. Find the vector of sufficient statistics, $t(y, z)$, and the vector of parameters, $\phi$, such that the only interaction between them is their inner product, as shown in Eq. (DLR2.1). Remember that $t(y, z)$ must contain only simple functions of the data (observed vectors $\vec{y}_{n}$ and hidden variables $z_{n}$ ), while $\phi$ must contain only simple functions of the trainable parameters $\left(c_{z}\right.$, $\vec{\mu}_{z}, \vec{r}_{z}$, and/or $\Sigma_{z}^{-1}$ ).
(g) Use your result from Sec. (f) to compute the observation-conditional expectation $t^{(p)}$, defined in (Eq. (DLR2.2)). Your answer should contain only the observation vectors $\vec{y}_{n}$, and the gamma function defined as follows:

$$
\gamma_{k}^{(p)}(n)=k\left(z_{n}=k \mid y_{n}, \phi^{(p)}\right)=\frac{c_{k} \mathcal{N}\left(\vec{y}_{n} \mid \vec{\mu}_{k}, \Sigma_{k}\right)}{\sum_{\ell=1}^{K} c_{\ell} \mathcal{N}\left(\vec{y}_{n} \mid \vec{\mu}_{\ell}, \Sigma_{\ell}\right)}
$$

(h) Use your result from Sec. (f) to compute the unconditional expectation $E\left(t(x) \mid \phi^{(p+1)}\right)$. Notice that this expectation does not depend on $\vec{y}_{n}$.
(i) Show that if you set the results of the previous two sections equal to one another, as in Eq. (DLR2.3), then you wind up with re-estimation equations that are identical to those of page 7 in JB97.

## Problem 2 (Restricted Boltzmann Machines)

Smolensky, 1986 (S86) defines the knowledge vector

$$
\vec{a}=\left[a_{1}, \ldots, a_{\alpha}, \ldots\right]^{T}, \quad a_{\alpha} \in\{0,1\}
$$

and the feature vector

$$
\vec{r}=\left[r_{1}, \ldots, r_{i}, \ldots\right]^{T}, \quad r_{i} \in\{0,1\}
$$

The harmony between them, $H(\vec{r}, \vec{a})$, is given by his Eq. (1) (which we will call (S1)). Define $\vec{e}=[1,1, \ldots]^{T}$, and define $W$ as on p. 232 of S86 to be

$$
W_{i \alpha}=\left(\vec{k}_{\alpha}\right)_{i} \frac{\sigma_{\alpha}}{\left\|\vec{k}_{\alpha}\right\|_{1}}
$$

Then in terms of $W, \vec{e}$, and Smolensky's backoff coefficient $\kappa$, it's possible to re-write Eq. (S1) as

$$
\begin{equation*}
H(\vec{r}, \vec{a})=\left(\vec{r}^{T} W-\kappa \vec{e}^{T}\right) \vec{a} \tag{5}
\end{equation*}
$$

(a) Eq. (S2) (equation (2) in Smolensky, 1986) defines $p(\vec{r}, \vec{a}) \propto e^{H / T}$ for some arbitrary constant $T$. Show that this pdf fits the exponential family of distributions defined in (DLR2.1). Create a table in which the DLR77 notation is in the left column, and the corresponding S86 notation is in the right column. Put the following entries in the left column: $y, z, \phi, t(x), a(\phi)$, and $b(x)$. Specify, in the right column, terms using Smolensky's notation that correspond to each of these DLR77 terms, in order to demonstrate that Eq. (S2) is a pdf in the exponential family.
(b) Use Eq. (S1) and (S2) to derive the conditional expectations $E\left(r_{i} \mid \vec{a}\right)$ and $E\left(a_{\alpha} \mid \vec{r}\right)$.

## Problem 3 (Parzen Windows)

Suppose that we have a training dataset $\mathcal{D}=\left\{x_{1}, \ldots, x_{N}\right\}$ whose samples were generated i.i.d. from an unknown pdf $f(x)$. We estimate $f(x)$ using the following estimator:

$$
f_{N}(x)=\frac{1}{h N} \sum_{n=1}^{N} K\left(\frac{x-x_{n}}{h}\right)
$$

where

$$
K(x)= \begin{cases}1 & |x| \leq 0.5 \\ 0 & \text { otherwise }\end{cases}
$$

(a) Find $E\left[f_{N}(x)\right]$ in terms of $f(x)$.
(b) Find $E\left[f_{N}^{2}(x)\right]$ in terms of $f(x)$.
(c) Choose a value of $h$, as a function of $N$, such that $f_{N}(x)$ is a consistent and asymptotically unbiased estimator.

