ECE 544NA PATTERN RECOGNITION Fall 2016

Homework in lieu of EXAM 2

Due Thursday, November 10, 2016 by 7:00pm

Feel free to work with other students, and/or to seek help from Raymond and Prof. Mark. Homework should be submitted **in your own handwriting**, to Professor Mark's mailbox in Beckman Institute by **7:00pm**, **Thursday November 10**. Note that the doors of the Beckman Institute are locked every night at roughly 7:00pm, so if you arrive at the last minute, you may not be able to submit on time.

Problem 1 (EM and GMM)

DLR77 = (Dempster, Laird and Rubin, 1977). JB97 = (Jeff Bilmes, 1997). This problem will use the notation of DLR77. Thus, in this problem, all vectors are row vectors rather than column vectors. The vector y is observed, z is hidden, and x = [y, z]. Equations in DLR77 will be referred to by numbers as (DLRn.nn).

(a) The fundamental problem of maximum likelihood parameter estimation is to find a set of parameters, ϕ , that will maximize the log likelihood of the data, the quantity $L(\phi)$ defined in Eq. (DLR2.4). When some of the variables are hidden, maximum likelihood parameters can be found by maximizing $Q(\phi'|\phi)$ from Eq. (DLR2.17) instead.

Let's substitute the pair of variables (y, z) everywhere that the paper uses x. Notice that with this substitution, Eq. (DLR2.5) becomes

$$k(z|y,\phi) = k(y,z|y,\phi) = f(x|\phi)/g(y|\phi)$$

Expand Eq. (DLR2.17) as

$$Q(\phi'|\phi) = \int k(z|y,\phi) \log f(z,y|\phi') dz$$

Define the cross-entropy between ϕ and ϕ' to be

$$H(\phi'|\phi) = \int k(z|y,\phi) \log k(z|y,\phi') dz \tag{1}$$

Use Eq. (DLR1.1), Eq. (DLR2.4), Eq. (DLR2.5), Eq. (DLR2.17), and Eq. (1) to find $Q(\phi'|\phi)$ in terms of $L(\phi')$ and $H(\phi'|\phi)$.

(b) Recall that the goal of maximum likelihood estimation is to find parameters that maximize $L(\phi)$. Suppose we start with one set of parameters, $\phi^{(p)}$, and we want to find another set, $\phi^{(p+1)}$, such that $L(\phi^{(p+1)}) > L(\phi^{(p)})$.

Use Eq. (DLR3.3), and your result from part (a), to show that

$$L(\phi^{(p+1)}) - L(\phi^{(p)}) \ge Q(\phi^{(p+1)}|\phi^{(p)}) - Q(\phi^{(p)}|\phi^{(p)})$$
(2)

Given Eq. (2), how should we choose $\phi^{(p+1)}$, and why?

- (c) Use Eq. (DLR2.1) to find $Q(\phi^{(p+1)}|\phi^{(p)}) Q(\phi^{(p)}|\phi^{(p)})$ for distributions in the exponential family. Your answer should include terms related to $\log a(\phi^{(p)})$, $\log a(\phi^{(p+1)})$, $\phi^{(p+1)}$, $\phi^{(p)}$, and the term $t^{(p)T}$ defined in Eq. (DLR2.2).
- (d) Use Eq. (DLR2.11) and your answer to the previous section to prove that $Q(\phi|\phi^{(p)})$ is maximized by the value of ϕ specified in Eq. (DLR2.3).
- (e) Use Eqs. (DLR1.1), (DLR2.1), (DLR2.5), and (DLR2.7) to derive (DLR2.8). Hint: you may find this easier if you substitute (y, z) in place of x everywhere that x occurs. Thus, for example, the region of integration $\mathcal{X}(y_0)$ can be defined as $\mathcal{X}(y_0) = \{y, z : y = y_0\}$
- (f) Consider the case of a GMM. Define y to be a set of N i.i.d. observation vectors, each of which is M-dimensional:

$$y = \{\vec{y}_1, \dots, \vec{y}_N\}, \quad \vec{y}_n \in \Re^M$$

Let z be the matching set of hidden variables, each of which is just an integer $1 \le z_n \le K$, thus

$$z = \{z_1, \ldots, z_N\}, \quad z_n \in \{1, \ldots, K\}$$

Finally, define their joint pdf to be

$$f(y, z|\phi) = \prod_{n=1}^{N} c_{z_n} \frac{1}{\det(2\pi\Sigma_{z_n})} \exp\left(-\vec{r}_{z_n} \left((\vec{y}_n - \vec{\mu}_{z_n}) \otimes (\vec{y}_n - \vec{\mu}_{z_n})\right)^T\right)$$
(3)

where the following special notation has been defined. First, \vec{r}_z is a $1 \times M^2$ vector, created by listing all of the elements of the $M \times M$ square matrix Σ_z^{-1} into one long row vector (for example, in a pseudo-Matlab notation, we could write $\mathbf{r=Sigmainverse(:)'}$). Second, $\vec{y}_n \otimes \vec{y}_n$ is the tensor product vector, defined as follows. If $\vec{y}_n = [y_{n1}, \ldots, y_{nM}]$, then

$$\vec{y}_n \otimes \vec{y}_n = [y_{n1}\vec{y}_n, y_{n2}\vec{y}_n, \dots, y_{nM}\vec{y}_n]$$

Finally, you may find it useful to define the unit indicator function as

$$\llbracket p \rrbracket = \begin{cases} 1 & p \text{ is true} \\ 0 & p \text{ is false} \end{cases}$$
(4)

Show that the GMM PDF (Eq. (3)) is a member of the exponential family. Find the vector of sufficient statistics, t(y, z), and the vector of parameters, ϕ , such that the only interaction between them is their inner product, as shown in Eq. (DLR2.1). Remember that t(y, z) must contain only simple functions of the data (observed vectors \vec{y}_n and hidden variables z_n), while ϕ must contain only simple functions of the trainable parameters (c_z , $\vec{\mu}_z$, \vec{r}_z , and/or Σ_z^{-1}).

(g) Use your result from Sec. (f) to compute the observation-conditional expectation $t^{(p)}$, defined in (Eq. (DLR2.2)). Your answer should contain only the observation vectors \vec{y}_n , and the gamma function defined as follows:

$$\gamma_{k}^{(p)}(n) = k(z_{n} = k | y_{n}, \phi^{(p)}) = \frac{c_{k} \mathcal{N}(\vec{y}_{n} | \vec{\mu}_{k}, \Sigma_{k})}{\sum_{\ell=1}^{K} c_{\ell} \mathcal{N}(\vec{y}_{n} | \vec{\mu}_{\ell}, \Sigma_{\ell})}$$

(h) Use your result from Sec. (f) to compute the unconditional expectation $E(t(x)|\phi^{(p+1)})$. Notice that this expectation does *not* depend on $\vec{y_n}$. (i) Show that if you set the results of the previous two sections equal to one another, as in Eq. (DLR2.3), then you wind up with re-estimation equations that are identical to those of page 7 in JB97.

Problem 2 (Restricted Boltzmann Machines)

Smolensky, 1986 (S86) defines the knowledge vector

$$\vec{a} = [a_1, \dots, a_\alpha, \dots]^T, \quad a_\alpha \in \{0, 1\}$$

and the feature vector

$$\vec{r} = [r_1, \dots, r_i, \dots]^T, \quad r_i \in \{0, 1\}$$

The harmony between them, $H(\vec{r}, \vec{a})$, is given by his Eq. (1) (which we will call (S1)). Define $\vec{e} = [1, 1, ...]^T$, and define W as on p. 232 of S86 to be

$$W_{i\alpha} = (\vec{k}_{\alpha})_i \frac{\sigma_{\alpha}}{\|\vec{k}_{\alpha}\|_1}$$

Then in terms of W, \vec{e} , and Smolensky's backoff coefficient κ , it's possible to re-write Eq. (S1) as

$$H(\vec{r},\vec{a}) = (\vec{r}^T W - \kappa \vec{e}^T) \vec{a}$$
⁽⁵⁾

- (a) Eq. (S2) (equation (2) in Smolensky, 1986) defines $p(\vec{r}, \vec{a}) \propto e^{H/T}$ for some arbitrary constant T. Show that this pdf fits the exponential family of distributions defined in (DLR2.1). Create a table in which the DLR77 notation is in the left column, and the corresponding S86 notation is in the right column. Put the following entries in the left column: $y, z, \phi, t(x), a(\phi)$, and b(x). Specify, in the right column, terms using Smolensky's notation that correspond to each of these DLR77 terms, in order to demonstrate that Eq. (S2) is a pdf in the exponential family.
- (b) Use Eq. (S1) and (S2) to derive the conditional expectations $E(r_i|\vec{a})$ and $E(a_{\alpha}|\vec{r})$.

Problem 3 (Parzen Windows)

Suppose that we have a training dataset $\mathcal{D} = \{x_1, \ldots, x_N\}$ whose samples were generated i.i.d. from an unknown pdf f(x). We estimate f(x) using the following estimator:

$$f_N(x) = \frac{1}{hN} \sum_{n=1}^N K\left(\frac{x - x_n}{h}\right)$$

where

$$K(x) = \begin{cases} 1 & |x| \le 0.5\\ 0 & \text{otherwise} \end{cases}$$

- (a) Find $E[f_N(x)]$ in terms of f(x).
- (b) Find $E[f_N^2(x)]$ in terms of f(x).
- (c) Choose a value of h, as a function of N, such that $f_N(x)$ is a consistent and asymptotically unbiased estimator.