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UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN

Department of Electrical and Computer Engineering

ECE 544NA Pattern Recognition
Fall 2016

Homework in lieu of EXAM 2

Due Thursday, November 10, 2016 by 7:00pm

Feel free to work with other students, and/or to seek help from Raymond and Prof. Mark.
Homework should be submitted in your own handwriting, to Professor Mark’s mailbox
in Beckman Institute by 7:00pm, Thursday November 10. Note that the doors of the
Beckman Institute are locked every night at roughly 7:00pm, so if you arrive at the last minute,
you may not be able to submit on time.

Problem 1 (EM and GMM)

DLR77 = (Dempster, Laird and Rubin, 1977). JB97 = (Jeff Bilmes, 1997). This problem
will use the notation of DLR77. Thus, in this problem, all vectors are row vectors rather than
column vectors. The vector y is observed, z is hidden, and x = [y, z]. Equations in DLR77 will
be referred to by numbers as (DLRn.nn).

(a) The fundamental problem of maximum likelihood parameter estimation is to find a set
of parameters, φ, that will maximize the log likelihood of the data, the quantity L(φ)
defined in Eq. (DLR2.4). When some of the variables are hidden, maximum likelihood
parameters can be found by maximizing Q(φ′|φ) from Eq. (DLR2.17) instead.

Let’s substitute the pair of variables (y, z) everywhere that the paper uses x. Notice that
with this substitution, Eq. (DLR2.5) becomes

k(z|y, φ) = k(y, z|y, φ) = f(x|φ)/g(y|φ)

Expand Eq. (DLR2.17) as

Q(φ′|φ) =

∫
k(z|y, φ) log f(z, y|φ′)dz

Define the cross-entropy between φ and φ′ to be

H(φ′|φ) =

∫
k(z|y, φ) log k(z|y, φ′)dz (1)

Use Eq. (DLR1.1), Eq. (DLR2.4), Eq. (DLR2.5), Eq. (DLR2.17), and Eq. (1) to find
Q(φ′|φ) in terms of L(φ′) and H(φ′|φ).

(b) Recall that the goal of maximum likelihood estimation is to find parameters that maximize
L(φ). Suppose we start with one set of parameters, φ(p), and we want to find another set,
φ(p+1), such that L(φ(p+1)) > L(φ(p)).

Use Eq. (DLR3.3), and your result from part (a), to show that

L(φ(p+1))− L(φ(p)) ≥ Q(φ(p+1)|φ(p))−Q(φ(p)|φ(p)) (2)

Given Eq. (2), how should we choose φ(p+1), and why?
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(c) Use Eq. (DLR2.1) to find Q(φ(p+1)|φ(p))−Q(φ(p)|φ(p)) for distributions in the exponential
family. Your answer should include terms related to log a(φ(p)), log a(φ(p+1)), φ(p+1), φ(p),
and the term t(p)T defined in Eq. (DLR2.2).

(d) Use Eq. (DLR2.11) and your answer to the previous section to prove that Q(φ|φ(p)) is
maximized by the value of φ specified in Eq. (DLR2.3).

(e) Use Eqs. (DLR1.1), (DLR2.1), (DLR2.5), and (DLR2.7) to derive (DLR2.8). Hint: you
may find this easier if you substitute (y, z) in place of x everywhere that x occurs. Thus,
for example, the region of integration X (y0) can be defined as X (y0) = {y, z : y = y0}

(f) Consider the case of a GMM. Define y to be a set of N i.i.d. observation vectors, each of
which is M -dimensional:

y = {~y1, . . . , ~yN} , ~yn ∈ <M

Let z be the matching set of hidden variables, each of which is just an integer 1 ≤ zn ≤ K,
thus

z = {z1, . . . , zN} , zn ∈ {1, . . . ,K}

Finally, define their joint pdf to be

f(y, z|φ) =

N∏
n=1

czn
1

det (2πΣzn)
exp

(
−~rzn ((~yn − ~µzn)⊗ (~yn − ~µzn))T

)
(3)

where the following special notation has been defined. First, ~rz is a 1×M2 vector, created
by listing all of the elements of the M×M square matrix Σ−1z into one long row vector (for
example, in a pseudo-Matlab notation, we could write r=Sigmainverse(:)’). Second,
~yn ⊗ ~yn is the tensor product vector, defined as follows. If ~yn = [yn1, . . . , ynM ], then

~yn ⊗ ~yn = [yn1~yn, yn2~yn, . . . , ynM~yn]

Finally, you may find it useful to define the unit indicator function as

JpK =

{
1 p is true
0 p is false

(4)

Show that the GMM PDF (Eq. (3)) is a member of the exponential family. Find the
vector of sufficient statistics, t(y, z), and the vector of parameters, φ, such that the only
interaction between them is their inner product, as shown in Eq. (DLR2.1). Remember
that t(y, z) must contain only simple functions of the data (observed vectors ~yn and hidden
variables zn), while φ must contain only simple functions of the trainable parameters (cz,
~µz, ~rz, and/or Σ−1z ).

(g) Use your result from Sec. (f) to compute the observation-conditional expectation t(p),
defined in (Eq. (DLR2.2)). Your answer should contain only the observation vectors ~yn,
and the gamma function defined as follows:

γ
(p)
k (n) = k(zn = k|yn, φ(p)) =

ckN (~yn|~µk,Σk)∑K
`=1 c`N (~yn|~µ`,Σ`)

(h) Use your result from Sec. (f) to compute the unconditional expectation E(t(x)|φ(p+1)).
Notice that this expectation does not depend on ~yn.
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(i) Show that if you set the results of the previous two sections equal to one another, as in
Eq. (DLR2.3), then you wind up with re-estimation equations that are identical to those
of page 7 in JB97.

Problem 2 (Restricted Boltzmann Machines)

Smolensky, 1986 (S86) defines the knowledge vector

~a = [a1, . . . , aα, . . .]
T , aα ∈ {0, 1}

and the feature vector
~r = [r1, . . . , ri, . . .]

T , ri ∈ {0, 1}
The harmony between them, H(~r,~a), is given by his Eq. (1) (which we will call (S1)). Define
~e = [1, 1, . . .]T , and define W as on p. 232 of S86 to be

Wiα = (~kα)i
σα

‖~kα‖1
Then in terms of W , ~e, and Smolensky’s backoff coefficient κ, it’s possible to re-write Eq. (S1)
as

H(~r,~a) = (~rTW − κ~eT )~a (5)

(a) Eq. (S2) (equation (2) in Smolensky, 1986) defines p(~r,~a) ∝ eH/T for some arbitrary
constant T . Show that this pdf fits the exponential family of distributions defined in
(DLR2.1). Create a table in which the DLR77 notation is in the left column, and the
corresponding S86 notation is in the right column. Put the following entries in the left
column: y, z, φ, t(x), a(φ), and b(x). Specify, in the right column, terms using Smolensky’s
notation that correspond to each of these DLR77 terms, in order to demonstrate that
Eq. (S2) is a pdf in the exponential family.

(b) Use Eq. (S1) and (S2) to derive the conditional expectations E(ri|~a) and E(aα|~r).

Problem 3 (Parzen Windows)

Suppose that we have a training dataset D = {x1, . . . , xN} whose samples were generated
i.i.d. from an unknown pdf f(x). We estimate f(x) using the following estimator:

fN (x) =
1

hN

N∑
n=1

K

(
x− xn
h

)
where

K(x) =

{
1 |x| ≤ 0.5
0 otherwise

(a) Find E[fN (x)] in terms of f(x).

(b) Find E[f2N (x)] in terms of f(x).

(c) Choose a value of h, as a function of N , such that fN (x) is a consistent and asymptotically
unbiased estimator.


