UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN
Department of Electrical and Computer Engineering

ECE 544NA PATTERN RECOGNITION
Fall 2016

Homework in lieu of EXAM 2

Due Thursday, November 10, 2016 by 7:00pm

Feel free to work with other students, and/or to seek help from Raymond and Prof. Mark.
Homework should be submitted in your own handwriting, to Professor Mark’s mailbox
in Beckman Institute by 7:00pm, Thursday November 10. Note that the doors of the
Beckman Institute are locked every night at roughly 7:00pm, so if you arrive at the last minute,
you may not be able to submit on time.

Problem 1 (EM and GMM)

DLR77 = (Dempster, Laird and Rubin, 1977). JB97 = (Jeff Bilmes, 1997). This problem
will use the notation of DLR77. Thus, in this problem, all vectors are row vectors rather than
column vectors. The vector y is observed, z is hidden, and x = [y, z]. Equations in DLR77 will
be referred to by numbers as (DLRn.nn).

(a)

The fundamental problem of maximum likelihood parameter estimation is to find a set
of parameters, ¢, that will maximize the log likelihood of the data, the quantity L(¢)
defined in Eq. (DLR2.4). When some of the variables are hidden, maximum likelihood
parameters can be found by maximizing Q(¢'|¢) from Eq. (DLR2.17) instead.

Let’s substitute the pair of variables (y, z) everywhere that the paper uses x. Notice that
with this substitution, Eq. (DLR2.5) becomes

k(zly, @) = k(y, 2y, ¢) = f(x|d)/9(yld)

Expand Eq. (DLR2.17) as

Qd|6) = / K(zly, 8) log £ (=, 91" dz

Define the cross-entropy between ¢ and ¢ to be

H(16) = [ kely. 6)log K(zly, ')z 1)
Use Eq. (DLRL1), Eq. (DLR2.4), Eq. (DLR2.5), Eq. (DLR2.17), and Eq. (1) to find
Q(¢'|¢) in terms of L(¢') and H(¢'|¢).

Recall that the goal of maximum likelihood estimation is to find parameters that maximize
L(¢). Suppose we start with one set of parameters, ¢P), and we want to find another set,
#®P+D such that L(¢@®tD)) > L(¢®).

Use Eq. (DLR3.3), and your result from part (a), to show that
L(¢®*Y) = L(6®) = Qa7 V|6 — (P61 (2)

Given Eq. (2), how should we choose #PtD) | and why?



()

Use Eq. (DLR2.1) to find Q(¢®*1)]¢®) —Q(¢®)|¢®)) for distributions in the exponential
family. Your answer should include terms related to log a(¢®), log a(¢®*1), @+ ¢®)
and the term t®7 defined in Eq. (DLR2.2).

Use Eq. (DLR2.11) and your answer to the previous section to prove that Q(¢|¢®) is
maximized by the value of ¢ specified in Eq. (DLR2.3).

Use Egs. (DLR1.1), (DLR2.1), (DLR2.5), and (DLR2.7) to derive (DLR2.8). Hint: you
may find this easier if you substitute (y, z) in place of x everywhere that = occurs. Thus,
for example, the region of integration X'(yp) can be defined as X(yo) = {y,z:y =vo}

Consider the case of a GMM. Define y to be a set of IV i.i.d. observation vectors, each of
which is M-dimensional:

y:{gla"'7g]\f}7 gneé)%M

Let z be the matching set of hidden variables, each of which is just an integer 1 < z,, < K,
thus

z=Az,...,28}, zm€{l,...,K}
Finally, define their joint pdf to be

N
f(y,z|¢) = l:Ilczndet(Qlﬂ'Zzn) €Xp <_an ((Un = fiz,) @ (Yn — /Izn))T) (3)

where the following special notation has been defined. First, 7, is a 1 x M? vector, created
by listing all of the elements of the M x M square matrix ¥, ! into one long row vector (for
example, in a pseudo-Matlab notation, we could write r=Sigmainverse(:)’). Second,
Un ® Uy, is the tensor product vector, defined as follows. If 4, = [yn1, .- ., Ynn], then

gn & ?jn = [ynlgna yn2.77na . 7ynM37n]

Finally, you may find it useful to define the unit indicator function as

| 1 pistrue
lp] = { 0 pis false (4)

Show that the GMM PDF (Eq. (3)) is a member of the exponential family. Find the
vector of sufficient statistics, ¢(y, z), and the vector of parameters, ¢, such that the only
interaction between them is their inner product, as shown in Eq. (DLR2.1). Remember
that t(y, z) must contain only simple functions of the data (observed vectors ¥, and hidden
variables z,,), while ¢ must contain only simple functions of the trainable parameters (c,,
fiz, T, and/or ¥1).

Use your result from Sec. (f) to compute the observation-conditional expectation (),
defined in (Eq. (DLR2.2)). Your answer should contain only the observation vectors g,
and the gamma function defined as follows:

&N (Gnl i, ©
%S;P)(n) =k(z, = k;|ym¢(p)) _ Kk (y “ﬁk : k)
2 =1 CeN (Gnlfie, Z)

Use your result from Sec. (f) to compute the unconditional expectation E(t(z)|¢®+D).
Notice that this expectation does not depend on %,.



(i) Show that if you set the results of the previous two sections equal to one another, as in
Eq. (DLR2.3), then you wind up with re-estimation equations that are identical to those
of page 7 in JBIT.

Problem 2 (Restricted Boltzmann Machines)

Smolensky, 1986 (S86) defines the knowledge vector
a=lai,...,aa,...]Y, aq€{0,1}
and the feature vector
‘]Ta LS {07 1}
The harmony between them, H (7, @), is given by his Eq. (1) (which we will call (S1)). Define
€=[1,1,...]T, and define W as on p. 232 of S86 to be
Wia - (Ecx)i =
1Kall1

Then in terms of W, €, and Smolensky’s backoff coefficient &, it’s possible to re-write Eq. (S1)
as

’F:[’I“l,...,’r‘i,..

Ou

H(7d) = (W — rel)a (5)

(a) Eq. (S2) (equation (2) in Smolensky, 1986) defines p(7,@) o< ef/T for some arbitrary
constant 7. Show that this pdf fits the exponential family of distributions defined in
(DLR2.1). Create a table in which the DLR77 notation is in the left column, and the
corresponding S86 notation is in the right column. Put the following entries in the left
column: y, z, ¢, t(z), a(¢), and b(x). Specify, in the right column, terms using Smolensky’s
notation that correspond to each of these DLR77 terms, in order to demonstrate that
Eq. (S2) is a pdf in the exponential family.

(b) Use Eq. (S1) and (S2) to derive the conditional expectations E(r;|@) and E(aq|7).

Problem 3 (Parzen Windows)

Suppose that we have a training dataset D = {z1,...,2y} whose samples were generated
ii.d. from an unknown pdf f(x). We estimate f(x) using the following estimator:

fn(@) = ijéK (”" }f")

where
1 |z] <05

K(x) = { 0 otherwise
(a) Find E[fn(z)] in terms of f(x).
(b) Find E[f% ()] in terms of f(z).

(c) Choose a value of h, as a function of N, such that fy(x) is a consistent and asymptotically
unbiased estimator.



