UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN Department of Electrical and Computer Engineering

ECE 544NA PATTERN RECOGNITION Fall 2016

EXAM 1

Tuesday, October 4, 2016

- $\bullet\,$ This is a CLOSED BOOK exam. You may use one page, both sides, of handwritten notes.
- There are a total of 100 points in the exam. Plan your work accordingly.
- You must SHOW YOUR WORK to get full credit.

Problem	Score
1	
2	
3	
4	
5	
Total	

Name:

Page 2

Problem 1 (20 points)

Linear regression is defined by p-dimensional observation vectors, \vec{x}_t , and scalar targets, y_t , which can be arranged into matrices as

$$X = \begin{bmatrix} \vec{x}_1^T \\ \vdots \\ \vec{x}_T^T \end{bmatrix}, \quad Y = \begin{bmatrix} y_1 \\ \vdots \\ y_T \end{bmatrix}$$

The goal of linear regression is to find a weight vector $\vec{w} = [w_1, \ldots, w_p]^T$ to minimize $E = ||Y - X\vec{w}||^2$. This can be done in closed form, as $\vec{w} = X^{\dagger}Y$, or using an iterative gradient descent algorithm, with iterations $\vec{w} \leftarrow \vec{w} - \eta \nabla_{\vec{w}} E$. Suppose that gradient descent requires m iterations, T is the number of training tokens, and p is the dimension of \vec{x}_t ; in terms of m, T, and p, specify the computational complexity of the closed-form and gradient descent algorithms. Assume T > p.

(a) Closed-form:
$$\mathcal{O}$$
 {

(b) Gradient Descent: \mathcal{O} {

Problem 2 (15 points)

A particular set of N swimmers is characterized by personality vectors \vec{x}_n , for $1 \le n \le N$. Each of the swimmers has tried T times to swim faster than a particular threshold time. Suppose that the variable $y_{nt} = 1$ if the n^{th} swimmer beat the target time on the t^{th} trial, otherwise $y_{nt} = 0$. A logistic regression model $\hat{y}_n = \vec{w}^T \vec{x}_n$ is trained in order to minimize

$$E = \frac{1}{2NT} \sum_{n=1}^{N} \sum_{t=1}^{T} (y_{nt} - \hat{y}_n)^2$$

Notice that \hat{y}_n is a function of n, but not of t. Define $p_n = \frac{1}{T} \sum_{t=1}^{T} y_{nt}$ to be the fraction of victories achieved by the n^{th} swimmer. Find a formula for $\nabla_{\vec{w}} E$ that depends only on p_n , \vec{w} , and \vec{x}_n , and does not depend on y_{nt} .

Problem 3 (15 points)

A support vector machine finds \vec{w} in order to minimize

$$E = \frac{1}{2} \|\vec{w}\|^2 + CR_{data}$$

where

$$R_{data} = \sum_{t=1}^{T} \max\left(0, 1 - y_t \vec{w}^T \vec{x}_t\right)$$

where $1 \leq t \leq T$ is the token index, C is an arbitrary constant, \vec{x}_t is the observation vector, and $y_t \in \{-1, 1\}$ is the target. Demonstrate that the optimum value of \vec{w} (the value that sets $\nabla_{\vec{w}} E = 0$) can be expressed as a linear combination of some of the training vectors $y_t \vec{x}_t$. NAME:

Exam 1

Problem 4 (26 points)

The outputs $z_{jt}^{(L)}$ of a softmax function are defined in terms of its inputs $a_{jt}^{(L)}$ as

$$z_{jt}^{(L)} = \frac{e^{a_{jt}^{(L)}}}{\sum_{k=1}^{n} e^{a_{kt}^{(L)}}}$$

where $1 \le t \le T$ is the training token index, $1 \le j \le n$ is the output node number, and L is the number of layers in the neural network (thus layer number L is the last layer). The training corpus error may be defined as

$$E = -\sum_{t=1}^{T} \sum_{j=1}^{n} y_{jt} \log z_{jt}^{(L)}$$

where $y_{jt} \in \{0, 1\}$ is the training target.

(a) Define $\delta_{jt}^{(L)} = \partial E / \partial a_{jt}^{(L)}$. Give a formula for $\delta_{jt}^{(L)}$ in terms of $\vec{z}_{jt}^{(L)}$ and y_{jt} .

(b) On Saturday October 1, 2016 in room 1005 of the Beckman Institute, Shuicheng Yang proposed that the fully-connected output layer of a CNN can be replaced by an average-pooling layer, defined similarly to the average-pooling final layer of a TDNN, thus:

$$a_{jt}^{(L)} = \sum_{p} \sum_{q} z_{jt}^{(L-1)}(p,q)$$
$$z_{jt}^{(L-1)}(p,q) = f(a_{jt}^{(L-1)}(p,q))$$

where p and q are the pixel indices in the $(L-1)^{\text{th}}$ layer, j is the channel index in both the $(L-1)^{\text{st}}$ and L^{th} layer, and f() is a nonlinearity whose derivative is f'(). Define the back-prop errors to be

$$\delta_{jt}^{(L)} = \frac{\partial E}{\partial a_{jt}^{(L)}}, \quad \delta_{jt}^{(L-1)}(p,q) = \frac{\partial E}{\partial a_{jt}^{(L-1)}(p,q)}$$

Express $\delta_{jt}^{(L-1)}(p,q)$ in terms of of $\delta_{jt}^{(L)}$ and $f'(a_{jt}^{(L-1)}(p,q))$.

Problem 5 (24 points)

Suppose we have a database of feature vectors \vec{x}_t and associated labels $y_t \in \{-1, 1\}$, where $1 \leq t \leq T$.

- Define $\vec{z_t}$, for this problem only, to be the signed feature vector, $\vec{z_t} = y_t \vec{x_t}$.
- Define \mathcal{W}_{∞} to be the set of vectors \vec{w} such that $\vec{w}^T \vec{z}_t > 0$ for all t.
- Assume linearly separable classes, which means that \mathcal{W}_{∞} is not an empty set.
- Define $\vec{w}_0 = \sum_{t=1}^T \vec{z}_t$

For each of the following statements, circle T if the statement is always true, circle F if the statement is sometimes false. If true, prove it. If false, disprove it (e.g., provide a training set $\{\vec{z_1}, \vec{z_2}\}$ that is linearly separable but disproves the claim; or you may use any other proof method).

(a) $\vec{w}_0^T \vec{w}_\infty > 0$, for all $\vec{w}_\infty \in \mathcal{W}_\infty$: T or F? Proof:

(b) $\vec{w}_0^T \vec{w}_\infty \ge 0$, for all $\vec{w}_\infty \in \mathcal{W}_\infty$: T or F? Proof: NAME:_

(c) The vector $\vec{w_0}$ is in the set \mathcal{W}_∞ : T or F? Proof:

(d) $\vec{w} \in \mathcal{W}_{\infty}$ is unique (there is only one \vec{w} such that $\vec{w}^T \vec{z}_t > 0$ for all t): T or F? Proof: In the following two subsections, define

$$\vec{w}_n = \vec{w}_{n-1} - \nabla_{\vec{w}_{n-1}} E_{n-1}$$

where

$$E_{n-1} = \sum_{t=1}^{T} \max\left(0, -\vec{w}_{n-1}^{T} \vec{z}_{t}\right)$$

(e) $\vec{w}_0^T \nabla_{\vec{w}_0} E_0 \leq 0$: T or F? Proof:

(f) $\vec{w}_1^T \vec{w}_\infty \ge 0$ for all $\vec{w}_\infty \in \mathcal{W}_\infty$: T or F? Proof: