UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN

Department of Electrical and Computer Engineering

ECE 544NA Pattern Recognition
Fall 2013

MIDTERM EXAM

Thursday, November 21, 2013

- This is a CLOSED BOOK exam. You may use two pages, both sides, of notes.
- There are a total of 100 points in the exam (15-20 points per problem). Plan your work accordingly.
- You must SHOW YOUR WORK to get full credit.

Problem	Score
1	
2	
3	
4	
5	
6	
Total	

Name: \qquad
\qquad

Problem 1 (15 points)

Measurements, x, are drawn from the pdf

$$
\begin{aligned}
p(x)=\operatorname{Pr}\{\mathcal{C}= & 1\} p_{1}(x)+\operatorname{Pr}\{\mathcal{C}=2\} p_{2}(x) \\
p_{1}(x) & =\frac{1}{\sqrt{2 \pi}} e^{-\frac{1}{2} x^{2}} \\
p_{2}(x) & =\frac{1}{\sqrt{2 \pi}} e^{-\frac{1}{2}(x-1)^{2}}
\end{aligned}
$$

Suppose $\operatorname{Pr}\{\mathcal{C}=1\}=\frac{1}{3}$. Specify the decision rule $y(x)$ that minimizes the probability $\operatorname{Pr}\{y(x) \neq \mathcal{C}\}$.
\qquad

Problem 2 (15 points)

Suppose you have N samples $x^{(n)}, 1 \leq n \leq N$, each distributed i.i.d. as

$$
p\left(x^{(n)}\right)= \begin{cases}\lambda e^{-\lambda x^{(n)}} & x^{(n)} \geq 0 \\ 0 & x^{(n)}<0\end{cases}
$$

The parameter λ is unknown; in fact, it is itself a random variable, and was selected, prior to creation of this dataset, according to the prior distribution

$$
p(\lambda)= \begin{cases}\tau e^{-\tau \lambda} & \lambda \geq 0 \\ 0 & \lambda<0\end{cases}
$$

Find the MAP estimate of λ in terms of N, τ, and the samples $x^{(n)}$.

Problem 3 (20 points)

A two-dimensional real vector $\vec{x}=\left[x_{1}, x_{2}\right]^{T}$ is selected from one of two uniform pdfs, either $p_{1}(\vec{x})$ or $p_{-1}(\vec{x})$, given as

$$
\begin{aligned}
& p_{1}(\vec{x})= \begin{cases}\frac{1}{9} & -1 \leq x_{2} \leq 2, \quad-\frac{3}{2} \leq x_{1} \leq \frac{3}{2} \\
0 & \text { otherwise }\end{cases} \\
& p_{-1}(\vec{x})= \begin{cases}\frac{1}{9} & -2 \leq x_{2} \leq 1, \quad-\frac{3}{2} \leq x_{1} \leq \frac{3}{2} \\
0 & \text { otherwise }\end{cases}
\end{aligned}
$$

A classifier is trained with the decision rule $y(\vec{x})=\operatorname{sign}\left(\vec{w}^{T} \vec{x}\right)$. The weight vector is trained using stochastic gradient descent, with a perceptron training criterion. Let $\vec{w}^{(n)}$ be the weight vector after presentation of $\vec{x}^{(n)}$ and $t^{(n)}$, thus

$$
\vec{w}^{(n)}=\vec{w}^{(n-1)}-\nabla_{\vec{w}} \max \left(0,-\left(\vec{w}^{(n-1)}\right)^{T}\left(t^{(n)} \vec{x}^{(n)}\right)\right)
$$

Suppose that after $N-1$ training iterations, for some very large N, the weight vector is given by

$$
\vec{w}^{(N-1)}=\left[\begin{array}{c}
0 \\
5000
\end{array}\right]
$$

Find the expected value after the next iteration, $E\left[\vec{w}^{(N)} \left\lvert\, \vec{w}^{(N-1)}=\left[\begin{array}{c}0 \\ 5000\end{array}\right]\right.\right]$. Be sure to consider the possibility that $\vec{x}^{(N)}$ might be correctly classified.
\qquad

Problem 4 (20 points)

A "spiral network" is a brand new category of neural network, invented just for this exam. It is a network with a scalar input variable $x^{(n)}$, a scalar target variable $t^{(n)}$, and with the following architecture:

$$
z_{j}^{(n)}=\left\{\begin{array}{ll}
x^{(n)} & j=1 \\
g\left(a_{j}^{(n)}\right) & 2 \leq j \leq M
\end{array} \quad, \quad a_{j}^{(n)}=\sum_{i=1}^{j-1} w_{j i} z_{i}^{(n)}\right.
$$

Suppose that the network is trained to minimize the sum of the per-token squared errors $\mathcal{E}^{(n)}=\frac{1}{2}\left(z_{M}^{(n)}-t^{(n)}\right)^{2}$. The error gradient can be written as

$$
\frac{\partial \mathcal{E}^{(n)}}{\partial w_{j i}}=\delta_{j}^{(n)} z_{i}^{(n)}
$$

Find a formula that can be used to compute $\delta_{j}^{(n)}$, for all $2 \leq j \leq M$, in terms of $t^{(n)}, z_{j}^{(n)}=$ $g\left(a_{j}^{(n)}\right)$, and/or $g^{\prime}\left(a_{j}^{(n)}\right)=\frac{\partial g}{\partial a_{j}^{(n)}}$.

Problem 5 (15 points)

Exact computation of the Hessian is usually impractical, but there is one case in which it is computationally efficient. Consider a one-layer, one-output network with input $\vec{x}^{(n)} \in \Re^{D}$ and scalar output $y^{(n)}$ given by

$$
y^{(n)}=g\left(a^{(n)}\right), \quad a^{(n)}=\sum_{i=1}^{D} w_{i} x_{i}^{(n)}
$$

The $(i, j)^{\text {th }}$ element of the Hessian matrix is defined by

$$
H(i, j)=\frac{\partial^{2} \mathcal{E}}{\partial w_{i} \partial w_{j}}, \quad \mathcal{E}=\frac{1}{2} \sum_{n=1}^{N}\left(y^{(n)}-t^{(n)}\right)^{2}
$$

Find $H(i, j)$ exactly in terms of $w_{i}, w_{j}, y^{(n)}=g\left(a^{(n)}\right), g^{\prime}\left(a^{(n)}\right)=\frac{\partial g}{\partial a^{(n)}}$, and $g^{\prime \prime}\left(a^{(n)}\right)=\frac{\partial^{2} g}{\left(\partial a^{(n)}\right)^{2}}$.

Problem 6 (15 points)

Consider an RBM with a scalar real-valued input, $v \in \Re$, and a binary hidden node, $h \in$ $\{0,1\}$. Consider the model

$$
p(h, v)=\frac{1}{Z} e^{-E(h, v)}, \quad E(h, v)=\frac{1}{2}(v-(w h+b))^{2}-h c
$$

for scalars w, b, and c and for denominator

$$
Z=\sum_{h=0}^{1} \int_{-\infty}^{\infty} e^{-E(h, v)} d v
$$

Assume that the values of h and v are given; find $\frac{\partial \ln p(h, v)}{\partial c}$.

