UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN Department of Electrical and Computer Engineering

ECE 544NA PATTERN RECOGNITION Fall 2013

MIDTERM EXAM

Thursday, November 21, 2013

- \bullet This is a CLOSED BOOK exam. You may use two pages, both sides, of notes.
- There are a total of 100 points in the exam (15-20 points per problem). Plan your work accordingly.
- You must SHOW YOUR WORK to get full credit.

Problem	Score
1	
2	
3	
4	
5	
6	
Total	

Name:

Problem 1 (15 points)

Measurements, x, are drawn from the pdf

$$p(x) = \Pr \{C = 1\} p_1(x) + \Pr \{C = 2\} p_2(x)$$

$$p_1(x) = \frac{1}{\sqrt{2\pi}} e^{-\frac{1}{2}x^2}$$

$$p_2(x) = \frac{1}{\sqrt{2\pi}} e^{-\frac{1}{2}(x-1)^2}$$

Suppose $\Pr \{ \mathcal{C} = 1 \} = \frac{1}{3}$. Specify the decision rule y(x) that minimizes the probability $\Pr \{ y(x) \neq \mathcal{C} \}$.

Problem 2 (15 points)

Suppose you have N samples $x^{(n)},\,1\leq n\leq N,$ each distributed i.i.d. as

$$p(x^{(n)}) = \begin{cases} \lambda e^{-\lambda x^{(n)}} & x^{(n)} \ge 0\\ 0 & x^{(n)} < 0 \end{cases}$$

The parameter λ is unknown; in fact, it is itself a random variable, and was selected, prior to creation of this dataset, according to the prior distribution

$$p(\lambda) = \begin{cases} \tau e^{-\tau \lambda} & \lambda \ge 0\\ 0 & \lambda < 0 \end{cases}$$

Find the MAP estimate of λ in terms of N, τ , and the samples $x^{(n)}$.

Problem 3 (20 points)

A two-dimensional real vector $\vec{x} = [x_1, x_2]^T$ is selected from one of two uniform pdfs, either $p_1(\vec{x})$ or $p_{-1}(\vec{x})$, given as

$$p_1(\vec{x}) = \begin{cases} \frac{1}{9} & -1 \le x_2 \le 2, & -\frac{3}{2} \le x_1 \le \frac{3}{2} \\ 0 & \text{otherwise} \end{cases}$$

$$p_{-1}(\vec{x}) = \begin{cases} \frac{1}{9} & -2 \le x_2 \le 1, & -\frac{3}{2} \le x_1 \le \frac{3}{2} \\ 0 & \text{otherwise} \end{cases}$$

A classifier is trained with the decision rule $y(\vec{x}) = \text{sign}(\vec{w}^T \vec{x})$. The weight vector is trained using stochastic gradient descent, with a perceptron training criterion. Let $\vec{w}^{(n)}$ be the weight vector after presentation of $\vec{x}^{(n)}$ and $t^{(n)}$, thus

$$\vec{w}^{(n)} = \vec{w}^{(n-1)} - \nabla_{\vec{w}} \max \left(0, -(\vec{w}^{(n-1)})^T (t^{(n)} \vec{x}^{(n)}) \right)$$

Suppose that after N-1 training iterations, for some very large N, the weight vector is given by

$$\vec{w}^{(N-1)} = \left[\begin{array}{c} 0\\5000 \end{array} \right]$$

Find the expected value after the next iteration, $E\left[\vec{w}^{(N)} \middle| \vec{w}^{(N-1)} = \begin{bmatrix} 0 \\ 5000 \end{bmatrix}\right]$. Be sure to consider the possibility that $\vec{x}^{(N)}$ might be correctly classified.

Problem 4 (20 points)

A "spiral network" is a brand new category of neural network, invented just for this exam. It is a network with a scalar input variable $x^{(n)}$, a scalar target variable $t^{(n)}$, and with the following architecture:

$$z_j^{(n)} = \begin{cases} x^{(n)} & j = 1\\ g\left(a_j^{(n)}\right) & 2 \le j \le M \end{cases}, \quad a_j^{(n)} = \sum_{i=1}^{j-1} w_{ji} z_i^{(n)}$$

Suppose that the network is trained to minimize the sum of the per-token squared errors $\mathcal{E}^{(n)} = \frac{1}{2}(z_M^{(n)} - t^{(n)})^2$. The error gradient can be written as

$$\frac{\partial \mathcal{E}^{(n)}}{\partial w_{ii}} = \delta_j^{(n)} z_i^{(n)}$$

Find a formula that can be used to compute $\delta_j^{(n)}$, for all $2 \leq j \leq M$, in terms of $t^{(n)}$, $z_j^{(n)} = g(a_j^{(n)})$, and/or $g'(a_j^{(n)}) = \frac{\partial g}{\partial a_j^{(n)}}$.

Problem 5 (15 points)

Exact computation of the Hessian is usually impractical, but there is one case in which it is computationally efficient. Consider a one-layer, one-output network with input $\vec{x}^{(n)} \in \Re^D$ and scalar output $y^{(n)}$ given by

$$y^{(n)} = g\left(a^{(n)}\right), \quad a^{(n)} = \sum_{i=1}^{D} w_i x_i^{(n)}$$

The $(i,j)^{\text{th}}$ element of the Hessian matrix is defined by

$$H(i,j) = \frac{\partial^2 \mathcal{E}}{\partial w_i \partial w_j}, \quad \mathcal{E} = \frac{1}{2} \sum_{n=1}^{N} (y^{(n)} - t^{(n)})^2$$

Find H(i,j) exactly in terms of w_i , w_j , $y^{(n)} = g(a^{(n)})$, $g'(a^{(n)}) = \frac{\partial g}{\partial a^{(n)}}$, and $g''(a^{(n)}) = \frac{\partial^2 g}{(\partial a^{(n)})^2}$.

Problem 6 (15 points)

Consider an RBM with a scalar real-valued input, $v \in \Re$, and a binary hidden node, $h \in \{0,1\}$. Consider the model

$$p(h,v) = \frac{1}{Z}e^{-E(h,v)}, \quad E(h,v) = \frac{1}{2}(v - (wh + b))^2 - hc$$

for scalars w, b, and c and for denominator

$$Z = \sum_{h=0}^{1} \int_{-\infty}^{\infty} e^{-E(h,v)} dv$$

Assume that the values of h and v are given; find $\frac{\partial \ln p(h,v)}{\partial c}.$