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Global Optimization of a Neural
Network—Hidden Markov Model Hybrid

Yoshua Bengio, Renato De Mori, Senior Member, IEEE, Giovanni Flammia, Student Member, IEEE, and Ralf Kompe

Abstract—The subject of this paper is the integration of mul-
tilayered and recurrent artificial neural networks (ANN’s) with
hidden Markov models (HMM?’s). ANN’s are suitable for approxi-
mating functions that compute new acoustic parameters, whereas
HMM’s have been proven successful at modeling the temporal
structure of the speech signal. In the approach described here,
the ANN outputs constitute the sequence of observation vectors
for the HMM. An algorithm is proposed for global optimization
of all the parameters. Results on speaker-independent recognition
experiments using this integrated ANN-HMM system on the
TIMIT continuous speech data base are reported.

[. INTRODUCTION

N spite of the fact that speech exhibits features that cannot

be represented by a first-order Markov model, hidden
Markov models (HMM’s) of speech units (e.g., phonemes)
have been used with a good degree of success in automatic
speech recognition (ASR) [1], [2]. Artificial neural networks
(ANN’s), in particular multilayer networks or recurrent
networks trained with back-propagation [3], have proven to
be useful for classifying speech properties and phonemes based
on the analysis of a speech segment of limited duration
[4]-[6]. Various attempts have been made to interpret
the time evolution of ANN outputs. Worth mentioning is
the postprocessor proposed by Robinson and Fallside [7],
which uses dynamic programming with duration and bigram
constraints. Along a similar line, researchers have attempted
to combine the classification power of ANN’s with the
time-domain modeling capability of HMM’s [8]-[13] or
to formalize HMM’s in the framework of ANN theory
[14]-[16].

This paper is inspired by previous proposals for combining
HMM’s and ANN’s [9], [12], [13], [15] and considers a
novel architecture in which ANN’s trained with the gener-
alized delta rule [3] perform approximations of functions for
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Fig. 1. Proposed ANN/HMM hybrid model: the outputs of the ANN consti-
tute the observation sequence for the HMM. The parameters of both the ANN
and the HMM can be estimated in order to perform a global optimization of
a given criterion.

computing acoustic parameters to be used as observations by
continuous density HMM’s (CDHMMs). It is shown how
to perform a joint global optimization of both the ANN and
the HMM parameter estimation by computing the gradient of
the optimization criterion for the HMM with respect to the
transformed observations. This gradient is sent to the ANN for
the estimation of the weight associated with each connection
of the network, as depicted in Fig. 1. No assumption need to
be made or constraints imposed on the network outputs, except
that the network output distribution can be modeled by a
mixture of multivariate Gaussians. Another novelty introduced
in this paper is that multiple ANN’s are combined so that
specialized networks for certain phoneme groups are fed by
acoustic data pertinent to the characterization of phonemes in
that group.

Section II relates the contents of this paper to the existing
literature. Section III describes the gradient computation of the
hybrid system consisting of ANN’s providing signal transfor-
mations considered as observations of the HMM’s. Section IV
introduces the algorithms for ANN parameter estimation.
Section V contains the details of the system architecture and
reports on experimental results obtained for the recognition of
the plosive sounds of the TIMIT data base [17]. An accuracy of
86% is obtained when the hybrid system is globally optimized,
as opposed to an accuracy of 81% when ANN’s and HMM’s
are trained separately.

1045-9227/92$03.00 © 1992 IEEE
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II. RELATED WORK

Interesting papers have been published recently describing
attempts at combining ANN’s with HMM’s. In some of
the proposed approaches (e.g., [10] and [15]) the activation
value of each output node of the network corresponds to
P(observation(t)|state(s)), the probability of observing a
set of acoustic parameter values at time ¢ conditional on the
state ¢ of the HMM (this probability will be indicated later
as bi¢). The ANN is trained to compute these observation
probabilities for the best sequence of states produced by the
alignment with the speech signal. In [10] the input data are
aligned with the model of the spoken utterance with the
Viterbi algorithm. In this case, the observation probabilities
are approximated by the network outputs. Another approach
is found in Bridle’s alphanets [15] and consists in viewing
the forward pass of the Baum-—Welch algorithm [18] as a
particular type of recurrent network with linear sums, products,
and single delays. With this point of view, ANN’s and HMM’s
can be seen as a single network for which the gradient of an
optimization criterion with respect to all system parameters
can be computed (although the HMM parameters require some
normalization). The idea of considering a unified paradigm
for ANN’s and HMM’s is also considered in [12]-[14]. An
often cited advantage of such a combination is to make the
HMM more discriminant [9], [13], [15]. This objective can
be attained with the approach proposed in this paper when
the hybrid is trained with the maximum mutual information
estimation (MMIE) criterion. The ANN outputs are considered
as observations for the HMM, and the HMM’s are trained with
methods that have already been proven very efficient for them.

Other hybrid systems combining ANN’s with HMM’s (e.g.,
[9] and [11]) have severe theoretical requirements (the ANN
must have enough parameters and training has to converge
to the global minimum) in order to express the posterior
probability P(state(i)|observation(t)). Our previous work
on hybrid models [8] used ANN’s merely to compute an
additional set of symbols considered as observations for a
discrete HMM. A vector-quantized codebook was generated
from these parameters and added to codebooks obtained for
other acoustic parameter sets. This did not require any as-
sumption on the network outputs but had the disadvantage that
the ANN and the HMM were trained separately. The method
described in the present paper makes it possible to perform
global parameter optimization by transmitting to the ANN a
gradient computed for the HMM. Furthermore, in order to
achieve rapid convergence to a solution, in the experiments
described here, global optimization is practically performed as
a global tuning that starts from an initial point determined by
prior (separate) training of the ANN and HMM. The ANN is
first trained to approximate recognition of phonetic features,
such as place of articulation. The HMM is trained with the
Baum-Welch algorithm using the trained ANN outputs as
observations. Only as a final step is a global tuning performed
in order to optimize parameter estimation of the whole system.

III. GRADIENT COMPUTATION IN THE HYBRID
ANN/HMM SYSTEM

In this paper, only left-to-right HMM’s with a single final
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state are considered. Let Y; be the vector of ANN outputs
at time £. These outputs are considered as observations of a
CDHMM used in the scheme shown in Fig. 1. Let ;T be the
whole observation sequence for the HMM, T is the length
of the observation sequence, and Y; a particular observation,
made when the HMM is in the state S; at time ¢. Let a;; be the
transition probability from state ¢ to state j. The probability
that the HMM generates Y; in state S, at time ¢ is denoted as
b;+ = P(Y:|S: = i). Algorithms [19] allow one to recursively
compute the following probabilities for partial sequences (up
to time ¢, from time ¢ + 1 on), with appropriate boundary
conditions assumed:

@it = P(Y{ and S; = ilmodel) = b ¥ ajioj1

J
/Hi.t = P(Yt{_1|5', =4 and model) = Z az‘jbjft_)_lﬂj,t_*_l.
J

o)

If the task is to model isolated units (e.g., isolated words),
there will be multiple models w, one for each unit. In the case
of continuous speech recognition, unit models (e.g., phones)
are concatenated to make word or sentence models. The
likelihood that an HMM has generated the observation corre-
sponding to the pronunciation of the model w is L, = ar, 1,
where F, is the final state for model w. HMM parameters can
be estimated with different criteria. Two popular criteria are
maximum likelihood (ML) and maximum mutual information
(MMI). Modeling with these two criteria is discussed in [20].
The mutual information between the model ¢ corresponding to
the pronounced sequence of units and the observation YT is

71 P(YIT‘ Inode]p)
-8 P(Y{) P(model,)

P (Y |model.)
> P(YF|model,) P(model,)

= log (2)

Maximum likelihood estimation (MLE) is based on the maxi-
mization of the criterion C, expressed as CyLg = L., where
¢ represents the pronounced sequence of units. Let us define

L.
Hisulated = Z Lw-. (3)

In the case of maximum mutual information estimation
(MMIE) for isolated unit modeling, the following criterion
can be used:

L.
> L.

Caivie = log (Hisolated) = log 4)

Assuming equal prior probabilities for each model, maximiz-
ing C\ivie as in (4) also maximizes the mutual information
I

For continuous speech, we assume that there is a single
HMM built by concatenating unit models. During training,
we consider a constrained model 7 that is made of the
concatenation of the units that form the training sentence. On
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the other hand, during recognition all the transitions from one
unit to another are possible and we use an unconstrained model
p, for example a loop model (see [2]). Hence, for continuous
speech, Cyvimie can be expressed as .

L,
C1MMIE = 10g (Hcontinuous) = log (L_>7
P
L.

where Hcontinuous = L_ (5)
P
L. = af, T denotes the likelihood of the training model and
L, = af, 1 denotes the likelihood of the recognition model.
By optimizing one of the above described criteria with the
hybrid system, we can replace the usual least mean square
criterion and direct supervision for the ANN with a supervision
which is derived from the temporal modeling in the HMM.
Assume b;; can be represented by Gaussian mixtures as

follows:

=2 e \E:k s
- OXP(—?(Yz - /tk)Z: (Y - Hk)T) (6

where n is the number of observation features of the HMM.
The transition probabilities @;;, normal distribution mean
vectors pi, covariance matrices » ,, and gains Z; can be
estimated as in [19]. A derivative of the cost function C' with
respect to b;; can be computed and used for estimating the
parameters of the ANN, as will be shown in the next section.

IV. ESTIMATION OF ANN PARAMETERS
As the optimization criterion C depends on the parameters
Y," computed by the ANN, it is possible to express C' as a
function of them and derive the following equation, using the
chain rule:
oCc
Y

oC b,
9biy Yy,

™

for all the ANN output units j (Y;; being the jth element of the
network output vector Y;). The negative of this gradient can
be used with back-propagation’ to estimate the ANN weights
Wmn. In the case of MLE, the derivative of the criterion CyLE
with respect to b;, is simply

0CyLE _ OLmodel _ OOF, y40,T ®)
Bbm 81)” 8bi,t

where model is the training model (the correct unit model, in
the case of isolated units modeling). In the case of MMIE, the
gradient of the optimization criterion CvmiE with respect to
the observation probabilities b; ; can be expressed as

oc 1 oH
Oby  H Obi,

©)
where H is defined as in (2) and (5) for isolated and continuous
speech modeling, respectively. In the case of isolated unit

't replaces the usual 9E/3Yj, = (Yt — target ;,) for output units, as
used in [3], where target ;, would be the desired oulput at time ¢ for unit j.
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modeling, for states i that are in a unit model w, the following
holds:

OHisolated _ (60..; - HC) aaFmodel:T (10)
8bi}t Zw L.u) abi,t
For continuous speech, we have the following derivative:
chontinuous _ 1 8al"".,.,T _ ap..T aaF,,,T (11)
abi’t - OLF‘”T 31)“ a%‘psT 8bi7t ’

In general, for every optimization criterion C' that can be
expressed as a differentiable function of the likelihood L, it is
possible to compute 9C/OL. By differentiating (6), 9b;,¢ /0Y
can be expressed as follows:

Zi
2:‘ (2n" (Z dyet; (piai — Y,,))

1

RO N
where dy. ;; is the element (1, §) of the inverse of the covariance

-1
')
the Ith element of the kth Gaussian mean vector p. Then,
following Bridle [15], it is possible to compute the following
derivative using (1) for any hidden Markov model, where

model is w for isolated unit modeling, or p (recognition model)
or 7 (training model) for continuous speech modeling:

ob; ¢
aY;,

") a2

matrix ( for the kth Gaussian distribution and pg; is

8017

model

(?Cki_yt

T Oaiy
0b; ¢

aaFdeelﬂT —

Ob; +

E :80‘1 t+1 00F 000, T
aac t aa].,H—l

§ :ajiaj,t—l
J

b. ) _aaFlnodelvT
j.t4+1045 (9——
7 Qjt+1

Qg
- ﬁz,t b7_ :

il

Zaj;aj,t—l
J
(13)

The equality on the previous line can be justified with the
recursive definition of 3; ; (see (1)), which is the same as the

. . da
recursive computation of ——axgﬂ-df-'—
dar, T T
model modeh
E a; t+1 (14)
Oai 1 b, Oa A1
with
dOLF T
models —
Y = = BFrucaa.T =1 (15)
QX Fioder T
so we have:
80[}:‘
Odely — ﬂi,t‘ (16)
3al’t

In summary, the computation of the gradient of a training
criterion for HMM’s with respect to the parameters of the
ANN has been introduced. In particular we have considered the
MLE and the MMIE criterion for both isolated and continuous
speech models. However, using the MLE criterion may yield
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a situation in which the likelihood is at a maximum but the
hybrid is not doing any useful computation. This could occur
if the ANN produced a constant output Y and the HMM
Gaussians were all merged into a single distribution with
mean Y and zero variance. This problem is avoided if the
optimization criterion is the maximization of the likelihood of
the inputs of the ANN (rather then its outputs). This approach
is studied in [21].

In order to implement an ANN/HMM hybrid system, the
following methodology was applied. First, ANN’s were trained
to recognize phonetically relevant features, such as place and
manner of articulation. Second, the output vector of these
networks was compressed by principal components analysis,
in order to provide a smaller size input vector for the HMM.
Third, a first estimation iteration computed initial values for
the HMM parameters, keeping the ANN’s fixed. Finally, the
global optimization procedure was applied in order to tune
both the HMM and the ANN parameters. In the next section,
an application of this algorithm is described in more detail.

V. EXPERIMENTAL RESULTS

A preliminary experiment has been performed using a
prototype system based on the integration of ANN’s with
HMM’s. Because of the simplicity of the implementation of
the hybrid trained with MLE, this criterion was used in these
experiments. Although such an optimization may theoretically
worsen performance, we observed significant improvement
after the final global tuning. This may be explained by the fact
that a nearby local maximum of the likelihood is attained from
the initial starting point based on prior and separate training
of the ANN and the HMM.

The purpose of the experiment is to show the benefits of
global optimization and of the use of suitable parameters for
characterizing plosive phonemes. An effort is in progress to in-
troduce and evaluate parameter sets suitable for other phoneme
classes. The task is the recognition of plosive phonemes in
every context and pronounced by a large speaker population.
The 1988 version of the TIMIT continuous speech data base
[17] has been used for this purpose. SI and SX sentences from
regions 2, 3, and 6 were used, with 1080 training sentences and
224 test sentences, 135 training speakers, and 28 test speakers.’
The following eight classes have been considered: /p/, /t/,
/k/, v/, [d/, g/, /dx/, fall other phones/. Speaker-independent
recognition of plosive phonemes in continuous speech is a
particularly difficult task because these phonemes are made of
short and nonstationary events that are often confused with
other acoustically similar consonants or may be merged with
other unit segments by a recognition system.

As discussed in [22], speech knowledge is used to design
the input, output, and architecture of the system and of each of
the networks. The ANN’s were trained with back-propagation
and on-line weight update [3]. The nonlinearity of the hidden
units was a symmetric sigmoid while that of the output units
was a nonsymmetric sigmoid.

2The training speakers were those with initial between “a” and “r” inclu-
sively; the remaining speakers were used for test.

3The flapped alveolar plosive /dr/ is considered a distinct phone in the
TIMIT data base.
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Fig. 2. Extension of the ANN/HMM hybrid to a hierarchy of modules,
with three levels.

The experimental system is based on the scheme shown
in Fig. 2. Rather than having a single ANN that computes the
vector Y of parameters, we have a hierarchy of networks. Such
an architecture is built on three levels. Input parameters are fed
to the networks every 5 ms. At level 1, two ANN’s are initially
trained to perform plosive recognition (ANN3) and broad clas-
sification (ANN2) respectively. In the experiment described
below, the combined network (ANN1 + ANN2 + ANN3) has
23578 weights. Level 2 is made of a single ANN (ANN1) that
acts as an integrator of parameters generated by the specialized
ANN’s of level 1. ANN1 is a linear network that initially
computes the principal components of the concatenated output
vectors of the lower level networks (ANN2 and ANN3).
Level 3 contains the HMM’s. In the following, we describe
in some detail the input parameters and the encoding of the
output nodes for each network. The approach that we have
taken is to select different input parameters and different
ANN architectures depending on the phonetic features to be
recognized.

The broad classification net (ANN2) has five outputs,
corresponding to five broad categories.* The 12 input nodes
to ANN2 are the energies of five band-pass filters in the
time domain covering the range up to 7 kHz, the signal
total energy, and their six time derivatives. The filters
were [IR (infinite impulse response) Butterworth band-pass
filters with the following —3 dB bandwidth specifications:
150-350 Hz, 60—500 Hz, 500-2500 Hz, 2500-3500 Hz, and
4000-7000 Hz. The nonlinear phase response of the filters
was not corrected. For the total energy and for the filters in the
150-350 and 60-500 Hz bands, an input window of 20 ms
was used. A window of 5 ms was used for every other filter.
The filter bandwidths were chosen based on acoustic-phonetics
knowledge (see, for example, [23] and {24]). This input feature
representation was found to perform better than other spectral
representations based on the computation of energies from the
fast Fourier transform of a fixed analysis window.

ANN2 has four fully connected layers (12-30-15-5)
and time-delay links: from the input at frame ¢ and frame
t—20 ms to the first hidden layer, and from the second hidden
layer at frame ¢ and ¢ — 20 ms to the output layer. It was found
that recurrence did not help for the performance. There were

4Nonnasal sonorant, nasal, plosive, fricative, and silence.
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also direct links without any delay from the input layer to
the second hidden layer and the output layer, and from the
first hidden layer to the output layer. This architecture was
optimized after a certain number of trials. The frame error
rates obtained after parameter estimation of this network alone
were 17.7% on the test set and 17.6% on the training set.

The plosive recognition net (ANN3) has 16 outputs, cor-
responding to place, manner, and degree of voicing, with
different instantiations of each place of articulation depending
on the right context.> The 74 inputs to ANN3 are the outputs
of 32 Bark-scaled (logarithmic) triangular filters computed
from the short-time fast Fourier transform of the windowed
signal; 30 property detectors approximating a second-order
derivative over short intervals of frequency and time;® seven
slope coefficients describing the frequency derivative of the
spectrum, the total energy and the voicing energy (in the
60—500 Hz band), and their time derivatives; and a measure
of distance (dot product) between neighboring spectral frames.
This particular selection of input parameters is the fruit of
some preliminary experiments [26]. In general, we have found
that using many correlated input parameters and using special-
ized ANN topologies with such a distributed output encoding
improves both the phonetic classification performance and the
convergence rate of the learning algorithm, compared with
using the spectrogram as only input and the more traditional
“on output node per phoneme” encoding.

The topology of ANN3 was optimized after a certain num-
ber of trials. Essentially it was a two-hidden-layers network
with delays, with the addition of recurrent connections between
the output layer and the second hidden layer, as shown in
Fig. 3. At time ¢, three input frames (¢, t — 15, and ¢ — 30 ms)
were used as input to the first hidden layer. To limit the
number of parameters to be estimated, these input-to-hidden
connections were localized in frequency. This means that the
first hidden layer was divided into small groups of a dozen
nodes, each being connected to a limited portion of the input
vector.

ANNI1 computes eight features for the continuous densi-
ties HMM. Each of the 11 unit models’ has 14 states, 28
transitions, and three self-loops, without explicitly modeling
the state duration, as shown in Fig. 4. Each HMM has tied
distributions with three basic different distributions charac-
terizing the beginning, middle, and final part of a segment
modeled by the unit. Each of these distributions is modeled by
a Gaussian mixture with five densities. The covariance matrix
is assumed to be diagonal since the parameters are initially
principal components and this assumption reduces significantly
the number of parameters to be estimated. The hybrid system
was trained in the final tuning step according to the equations

5 Each of the four different places of articulation (labial, alveolar, velar, and
flapped alveolar) corresponds to two different nodes, depending on whether the
following phone has a front or nonfront place of articulation. The remaining
eight nodes are labeled: unvoiced plosive, voiced plosive, vocalic front,
vocalic nonfront, liquid, fricative, nasal, silence.

This parameter is inspired by studies in acoustic-phonetics [25].

7In order to improve its modeling, the rejection class was composed
out of four models: nasals, fricatives, nonnasal sonorants, and silence. The
recognition results are obtained by merging these four subclasses, such that
the total number of classes to recognize is eight.
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Fig. 3. Network architecture used for the recognition of plosives (ANN3).
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Fig. 4. Topology of the HMM’s used in the experiments. Distributions are
associated with transitions.

for continuous speech with the MLE criterion described in
Sections III and IV.

In order to assess the value of the proposed approach as well
as the improvement brought by the HMM as a postprocessor
for time alignment, the performance of the hybrid system was
evaluated and compared with that of a simple postprocessor
applied to the outputs of the ANN’s and with that of a standard
dynamic programming postprocessor that models duration
probabilities for each phoneme. The simple postprocessor
assigns. a symbol to each output frame of the ANN’s by
comparing the target output vectors with actual output vectors.
It then smoothes the resulting string to remove very short
segments and merges consecutive segments that have the
same symbol. The dynamic programming (DP) postprocessor
finds the sequence of phones that minimizes a cost. This cost
depends on the product of the duration probabilities for each
phone segment and of the conditional probability of the data
(network output) given a phoneme. In the case in which bigram
probabilities are also used, the conditional probabilities of a
phone given the previous phone are also multiplied in the
cost expression. The duration probabilities are modeled by
a gamma distribution estimated with the TIMIT labeling for
the training set. The observation probabilities are modeled
by multivariate normal densities for each phoneme, estimated
with the outputs of the network and the corresponding TIMIT
labels fO{ the training set.
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TABLE [
COMPARATIVE RECOGNITION RESULTS: NEURAL NETWORKS
ALONE, WITH DYNAMIC PROGRAMMING, WITH HIDDEN
MARKOV MODELS, AND WITH GLOBAL OPTIMIZATION

% % % % %

rec ins del subs acc
ANN’s 85 32 0.04 15 53
ANN’s 4+ DP (no bigrams) 88 16 001 11 72
ANN’s + DP (bigrams) 88 14 001 11 74
ANN’s + HMM 87 68 09 12 81

ANN’s + HMM + global opt. 90 38 14 9.0 86

The comparative results for the three systems are sum-
marized in Table I. The overall recognition rate (100% —
% deletions — % substitutions) for the eight classes with
hybrid system after two training iterations is 90% on a total
of 7214 phones, and its accuracy (100% — % deletions —
% substitutions — % insertions) is 86%. This is a significant
improvement over the performance obtained with an HMM
trained without global optimization (86% recognition and 80%
accuracy), as well as with respect to the two DP systems
(88% recognition and 72% accuracy without bigrams and 88%
recognition and 74% accuracy with bigrams). The biggest
improvement with respect to the ANN’s comes from modeling
the durations rather than the bigrams. The ANN’s alone
yielded 85% recognition but only 53% accuracy, because of
the high number of insertions (32%), mostly because of short
plosive segments. The ANN’s perform a good classification
but have a noisy output with many insertions. The HMM or DP
duration modeling eliminates most of these insertions because
of their better duration and temporal structure modeling. With
global optimization, in addition to providing a good temporal
model, the HMM provides more appropriate target values for
the outputs of the ANN. With these target outputs for the ANN,
the hybrid system significantly improves its performance. It is
interesting to note that the effect of (7) and (12) is to generate
a gradient that tends to bring the output of the ANN closer
to the means of the normal densities which are close to the
ANN output as well as consistent with the training string. This
tends to reduce the variance of the ANN outputs with respect
to those means, while allowing for a richer set of target vectors
(Gaussian means) than the usual ANN supervision.

Our previous experience as well as other results [27],
[28] indicates that on-line update of ANN weights yields
faster convergence than batch update, especially for pattern
recognition problems such as those in speech recognition.
Comparative experiments performed with the hybrid system
indicate that the on-line update for HMM parameters as well
seems to yield better results. In Table II, the two update
methods for the HMM parameters within the hybrid system
are compared. Traditionally, the HMM parameters are updated
after having compiled statistics over the whole training set.
The alternative update method used in the experiments is a
smoothed on-line parameter update:

bip=(1=a)ip_1 +abi, 17

where 6; , is the new value of parameter ¢ after sentence p, ¢ is
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TABLE 11
GENERALIZATION OF THE ANN/HMM HYBRID SYSTEM AS A FUNCTION OF THE
NUMBER OF TUNING ITERATIONS AND THE HMM PARAMETER UPDATE METHOD

% rec % ins % del % subs % acc
Iteration 0 87.6 6.8 0.9 11.5 80.7
Iteration 1 (batch) 87.1 3.6 22 10.7 83.5
Iteration 2 (batch) 87.7 38 1.9 11 83.4
Iteration 1
(on-line) 89.5 4.0 1.3 9.2 85.5
Iteration 2
(on-line) 89.6 3.8 1.4 9.0 85.8
Iteration 3
(on-line) 87.6 3.6 2.4 10 84.0

a small constant,® and (91-,1, is the estimation of the parameter
§; given the observations in sentence p, using usual HMM
parameter estimation algorithms {19]. Table II also shows the
evolution of generalization errors after one and two training
iterations of the hybrid system with global optimization. In the
experiments, a minimum of the error was reached after only
two iterations. Further training only reduced generalization.

VI. CONCLUSION AND EXTENSIONS

A system has been proposed to combine the advantages of
ANN’s and HMM’s for speech recognition. The parameters of
the ANN and HMM subsystems can influence each other. We
showed how to perform a global optimization of such a system
by driving the network gradient descent with parameters
computed in the HMM. Encouraged by the results of the
above-described initial experiments, which indicate that global
optimization of a hybrid ANN-HMM system gives some
significant performance benefits, we will explore further the
possibilities of such a hybrid system and extend it to the
recognition of all American-English phonemes. We have seen
how such a hybrid system could integrate multiple ANN
modules, which may be recurrent.

An interesting extension would be to perform speaker
adaptation with the hybrid system. This could be obtained by
first training the system as previously described for multiple
speakers, and in a second step, adapting only the ANN parame-
ters with sentences from the new speaker. In such a system, the
ANN adaptation represents a tuning of the feature space to the
new speaker, whereas the temporal model remains unchanged
(see [29] for a related speaker adaptation mechanism).

Another extension would be to replace the linear transfor-
mation performed in the second level (principal components)
by a network with a hidden layer and symmetric sigmoids.
This network could still be initialized to compute the principal

8We used a = 0.005, except for the variances of the observation distribu-
tions which were updated with a semibatch algorithm, because the estimation
of the second moment of the distributions requires more observations:

Oip = (l - %

P .
)az.pfl + TUl.l.p~
where N is the number of sentences, and &; 1, is the estimation of the
parameter o; given all the observations from sentence 1 to sentence p, using
standard HMM parameter estimation algorithms [19]. This method forces a
slow initial adaptation of the variances but computes their final value using
all the training data.
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components of the outputs of the first level. This can be
obtained by decomposing the principal components matrix into
the product of two matrices, e.g., with LU decomposition [30],
and multiplying the hidden layer weights by a small constant e.
Because the symmetric sigmoid is linear around 0, the network
initially computes principal components, but it can be adapted
with back-propagation and perform a nonlinear transformation
after training.

Although the ANN’s used in the experiments were recurrent,
they did not capture the temporal structure of the speech
signal as well as the hybrid system or the DP postprocessor.
Notice that very few parameters were used in the HMM or
the DP postprocessors to describe the temporal structure of the
observations (transition probabilities or duration probabilities,
respectively). This may indicate that current ANN topologies
and related algorithms are inefficient in modeling temporal
structures. It should be observed that HMM’s generally used
for speech recognition have a left-to-right structure rather than
a full connectivity from state to state. It may be possible to
improve the way in which temporal structures are modeled
in ANN’s by imposing appropriate constraints on their ar-
chitecture for the particular problem of learning to recognize
sequences.
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