
The Effects of Quantization On Support Vector
Machines Using Polynomial Kernel

Ihab Nahlus

Abstract—In this paper, we apply a probabilistic method to
predict the effect of quantization in a digital implementation of
a Support Vector Machine (SVM). the quantization effects taken
into consideration are both, input data and calculations done
inside the processor. We derived a closed-form expression for
these effects for an SVM using a 2nd order polynomial Kernel
and matched it with simulations.

I. INTRODUCTION

Although the subject of Support Vector Machines (SVMs)
have started in the late seventies by Vapnik [1], the attention
only sparkled after Vapnik’s 1995 paper [2]. SVMs were used
for classification mainly [3] [4] and later extended to regression
[5]. In all of these cases, SVM was reported to have a better
performance than all of the competing methods. There are
recent hardware implementations of SVMs [6] [7] [8] that
target a low-power design for the hope of development of
embedded systems - general purpose processors are highly
ineffective for embedding.

One might consider an analog implementation of a SVM,
espcially that they are highly energy-efficient for low accura-
cies (< 8 bits) [9]. But the lack of a reliable analog storage
device to store the required parameters makes the implemen-
tation currently impossible. A viable solution, however, would
be the use of a mixed-signal implementation that combines
the advantages of both digital and analog approaches. Low-
Pass(LP) analog computing is a newly proposed method which
is based on weighted charge transfer between analog inputs
and output, set by the duty cycle of the digital select signal.
A comparison of LP analog computing and digital computing
has already been done and results are shown in Figure 1. We
can see that LP analog is more energy efficient for accuracies
less than 8 bits.

To choose which approach is more energy-efficient, we
need to know how many bits the SVM would require. If
this number is less than 8, one should go with the LP
analog implementation and otherwise, just stick to the digital
implementation. Hence, The objective is pretty clear ; predict
how many bits are needed for the implementation of a SVM. In
the past, quantization effects have been studied for a hardware
implementation of a Multi-Layer Perceptron (MLP) and other
neural networks. There are mainly two approaches to go
about solving this problem. The first one takes a worst-case
analysis by propagating the quantization effect from input to
output and bounding its value [10] . The second approach
assumes the quantization effect to be random with a specific
Probability Distribution Function (PDF). This approach is very
common in most Digital Signal Processing systems and the
main assumption is that the PDF of the noise corresponds to a
Uniform distribution [11] [12] . For SVMs, The first technique
has already been done in [6] and the second technique has been

Figure 1. Comparison of LP analog computing with Digital computing

done in [13]. However in [13], the author ignored quantization
effects coming from calculations inside the processor and
only considered the SVM with a Gaussian Kernel. In this
paper, we will extend that analysis in [13] to SVM with
polynomial Kernels and will analyze all quantization effects,
namely coming from input and from fixed-point calculations.

The following section reviews some Support Vector Ma-
chine basics and introduces some notation. In section III,
quantization basics will be introduced. Section IV details the
main result of this paper and we report the experimental results
in Section V.

II. SUPPORT VECTOR MACHINE

We have a setting where {X}ni=1 are the inputs to the
system s.t. Xi ∈ RD. Accordingly, we have {ti}ni=1 which
are the target classes s.t. ti ∈ {−1, 1}. This is known as the
binary classification problem.

The goal of the Support Vector Machine is to find the
hyperplane separating the 2 classes. The boundary will have an
equation 〈WT,Φ(Xi)〉+b = 0 where W and b are parameters
we would like to determine and Φ(X) is some mapping ,
usually taking Xi to a higher dimensional space(more on it
later).

Our decision function y(X) is sign(〈WT,Φ(Xi〉+b). Let
X1 and X2 be such that:

〈WT,Φ(X1)〉+ b = −1

〈WT,Φ(X2)〉+ b = +1

where the data has been re-scaled such that no points lie
between -1 and 1, and hence X1 and X2 represent the

boundaries of the 2 classes. We will see that these vectors
are very important in SVMs, earning them a special name in
the literature, Support Vectors.

One can show that the distance between the 2 boundaries
is 2
‖W‖ . Intuitively, we would like to maximize this quantity,

or equivalently minimizing the inverse ‖W‖2 , which is in turn
equivalent to minimizing ‖W‖

2

2 . This leads to the following
Quadratic Programming (QP) problem:

minw,b
1

2
‖W‖2

subject to ti(〈WT,Φ(Xi)〉+ b) ≥ 1

This all assumes that the data was perfectly separable. A sim-
ple extension to this problem when the data are not perfectly
separable is the soft-margin extension where we introduce
slack variables εi for each Xi. Our QP problem becomes:

minW,b,ε
1

2
‖W‖2 + C

n∑
i=1

εi (1)

subject to ti(〈WT,Φ(Xi)〉+ b) ≥ 1− εi
εi ≥ 0

where C serves as a limiting quantity to the penalty factors for
misclassified data.

One can show that the solution to the problem in (1) is :

y(X) =

n∑
i=1

αiti〈Φ(X),Φ(Xi)〉+ b (2)

where {α}ni=1 are the lagrange multipliers of the Lagrangian
solution to problem (1). We note that {α}ni=1 are 0 for all
vectors except the ones on the boundary, what we previously
called the Support vectors. Hence, the complexity of this
algorithm depends largely on the number of Support vectors,
which we denote by L.

We notice that the solution in (2) only depends on the inner
product of the Φ function and hence is attributed a special
name in practice, Kernel function. By this definition, we can
rewrite equation (2) as

y(X) =

n∑
i=1

αitiK(X,Xi) + b (3)

The Kernel function is usually chosen to operate on the lower
dimension vectors X and Xi to produce a value equivalent
to the dot-product of the higher-dimensional vectors. A well
known family of Kernels is the Mercer Kernel family, where
the kernel must be continuous,symmetric and positive-semi
definite. Albeit having these requirements, we list some com-
mons Kernels which have already been proved to be Mercer
Kernels,

• K(X,Xi) = (1 + 〈X,Xi〉)d for some integer d,
known as the Polynomial Kernel

• K(X,Xi) = e(γ‖X−Xi‖2) for some γ, known as the
Gaussian Kernel

• K(X,Xi) = tanh(p1〈X,Xi〉−p2) for some positive
p1, p2, known as the Perceptron Kernel

We will restrict our attention in this paper to polynomial
kernels, for ease of hardware implementations. Namely,

y(X) =

n∑
i=1

αiti(1 + 〈X,Xi〉)d + b (4)

By noting that (1 + 〈X,Xi〉)d =
d∑
j=0

(
d
j

)
〈X,Xi〉j , we can

rewrite (4) as:

y(X) =

d∑
j=0

(
d

j

)
yj(X) + b (5)

where yj(X) ,
n∑
i=1

αiti〈X,Xi〉j =
n∑
i=1

αitiZ
j
i . Zi was

introduced just for notational convenience.

III. QUANTIZATION EFFECTS

A. Basics

Let qε1,ε2 be the quantization error, going from ε2 bits to
ε1 bits. We denote by ∆(ε1, ε2) , 2−ε1 − 2−ε2 to be the
quantization step size.A few examples are shown below:

• Quantization from real value to N bits =⇒ ε1 = N
and ε2 =∞

• Quantization after multiplication =⇒ ε1 = N and
ε2 = 2N

• Quantization after addition =⇒ ε1 = N and ε2 =
N + 1

The quantization is usually assumed to be Uniformly
distributed in the interval [−∆(ε1,ε2)

2 , ∆(ε1,ε2)
2]. One can easily

show that:

E[qε1,ε2] = 0 (6)

σ2
ε1,ε2 , E[q2

ε1,ε2] =
∆2(ε1, ε2)

12
(7)

We denote in what follows x̃ to be the quantized version of x

x̃ , x+ qx

B. Inner Product

Let qIP,X be the calculation quantization error at the output
of an Inner Product X of D dimensions. We have a total of D
multiplications and (D − 1) additions. Hence, we can obtain
qIP,X as

qZ,IP =

D∑
i=1

q
(i)
N,2N +

D−1∑
i=1

q
(i)
N,N+1

where q
(i)
N,2N and q

(i)
N,N+1 are all assumed independent. We

derive the mean and variance,

E[qZ,IP] = E[

D∑
i=1

q
(i)
N,2N +

D−1∑
i=1

q
(i)
N,N+1]

=

D∑
i=1

E[q
(i)
N,2N] +

D−1∑
i=1

E[q
(i)
N,N+1] = 0

σ2
IP , = E[q2

Z,IP] = E[

D∑
i=1

q
2(i)
N,2N +

D−1∑
i=1

q
2(i)
N,N+1

+2

D∑
i=1

q
(i)
N,2Nq

(i)
N,N+1]

=

D∑
i=1

E[q
2(i)
N,2N] +

D−1∑
i=1

E[q
2(i)
N,N+1]

= Dσ2
N,2N + (D − 1)σ2

N,N+1

IV. QUANTIZATION IN A 2nd ORDER POLYNOMIAL SVM

We will restrict our derivations for an SVM using a 2nd

order polynomial Kernel. Equation (5) reduces to :

y(X) = y0(X) + 2y1(X) + y2(X) + b

We note here that at the time of implementing the hardware
system, the SVM has already been trained and we already
know the indices for which {α}ni=1 is non-zero. Hence, we
can store the {α}Li=1 which are non-zero with their according
support vectors, {X}Li=1, and targets, {ti}Li=1. We will not
consider the quantization effect on these parameters as it is
a pre-determined process and not random by any means. The
only quantization left to analyze is the input quantization and
calculations inside the processor.

A. Constant Term

y0(X) =

L∑
i=1

αiti (8)

The quantity in equation (8) can be pre-determined and stored
during the implementation of this system.

B. Linear Term

y1(X) =

L∑
i=1

αitiZi (9)

with Zi = 〈X,Xi〉. We first calculate Z̃i.

Z̃i = 〈X̃,Xi〉
= 〈X,Xi〉+ 〈qX,Xi〉+ qIP,Zi

Now we replace back in (9),

ỹ1(X) =

L∑
i=1

αitiZ̃i

=

L∑
i=1

αitiZi +

L∑
i=1

αiti〈qX,Xi〉

+

L∑
i=1

αitiqIP,Zi
+ qIP,y1(X)

, y1(X) + qy1(X)

Now, we evaluate the mean and variance of qy1(X),

E[qy1(X)] =

L∑
i=1

αiti〈E[qX],Xi〉+

L∑
i=1

αitiE[qIP,Zi
]

+E[qIP,y1(X)]

= 0 (10)

E[q2
y1(X)] = E

(L∑
i=1

αiti〈qX,Xi〉

)2
+ E[q2

IP,y1(X)]

+E

(L∑
i=1

αitiqIP,Zi

)2
+
���

���
��:0

E[cross terms]

= σ2
N,∞

D∑
k=1

〈αt,X(k)〉2 + σ2
IP + σ2

IP ‖α‖2 (11)

C. Quadratic Term

y2(X) =

L∑
i=1

αitiZ
2
i

Here, we compute Z̃i like before. To obtain Z̃2
i , we multiply

it by itself,

Z̃2
i = Z̃iZ̃i

= 〈X,Xi〉2 + 〈qX,Xi〉2 + q2
IP,Zi

+ 2qIP,Zi
〈X,Xi〉

+2qIP,Zi
〈qX,Xi〉+ 2〈X,Xi〉〈qX,Xi〉

By a similar derivation to that in the previous sub-section, we
can write qy2(X) as,

qy2(X) =

L∑
i=1

αiti

(
〈qX,Xi〉2 + q2

IP,Zi
+ 2qIP,Zi〈X,Xi〉

+2qIP,Zi
〈qX,Xi〉+ 2〈X,Xi〉〈qX,Xi〉

)
+qIP,y2(X)

Now, we calculate the mean and variance of qy2(X),

E[qy2(X)] = σ2
N,∞

D∑
k=1

〈αX(k), tX(k)〉+ σ2
IP 〈α, t〉 (12)

(Only the Squared terms contribute to the mean, others are 0)

E[q2
y2(X)] = σ4

N,∞

(
D∑
k=1

〈αX(k), tX(k)〉

)2

+ σ4
IP 〈α, t〉2

+4σ2
N,∞

D∑
k=1

〈αZ, tX(k)〉+ σ2
IP (1 + 4〈αZ, αZ〉)

+σ2
N,∞σ

2
IP

D∑
k=1

4〈αtX(k), αtX(k)〉

+σ2
N,∞σ

2
IP

D∑
k=1

〈α, t〉〈αX(k), tX(k)〉 (13)

Figure 2. Experimental Setup

We assumed in the above that

E[q4
ε1,ε2] =

(
E[q2

ε1,ε2]
)2 16× 5

122
≈
(
E[q2

ε1,ε2]
)2

D. 2nd order polynomial system

By ignoring the quantization effects of the last stage of
calculations , we can write qy(X) as

qy(X) = qy1(X) + qy2(X)

Now, we calculate the mean and variance

E[qy(X)] = E[qy1(X)] + E[qy2(X)] (14)

E[qy1(X)] and E[qy2(X)] are found in equations (10) and (12).

E[q2
y(X)] = E[q2

y1(X)] + E[q2
y2(X)] + 2E[qy1(X)qy2(X)] (15)

E[q2
y1(X)] and E[q2

y2(X)] are found in equations (11) and (13).
We still need to calculate E[qy1(X)qy2(X)]

E[qy1(X)qy2(X)] = 2σ2
N,∞

D∑
k=1

〈αZ, tX(k)〉〈α, tX(k)〉

+2σ2
IP 〈αtZ, αt〉

V. EXPERIMENTAL RESULTS

Let xi =
(
x

(1)
i , ricos(θi), x

(2)
i , risin(θi))

)
∈ R2 such

that

ri ∈
{

[0, 1], if ti = −1.

[1, 2], if ti = 1.
, θi ∈ [0, 2π]

The experimental setup is shown in Figure 2. We show the
training of our data vectors with a 1st order polynomial Kernel
in Figure 3. One clearly see that this classifier will not work
properly. In Figure 4 and 5, the training of our data vectors
with a 2nd order polynomial Kernel and Gaussian Kernel
,respectively ,are shown. We can see that both classifiers have a
good separating hyperplane but the number of Support vectors
for the polynomial Kernel is half as much (6% compared
to 12%). A total of 2000 vectors were used for training the
SVM in each case. This justifies our choice for a 2nd order
polynomial Kernel.

Figure 3. SVM training with 1st order polynomial

Figure 4. SVM training with 2nd order polynomial

Figure 5. SVM training with Gaussian Kernel

Figure 6. Quantization Simulation vs Theoretical

Figure 7. Probability of Error

In Figure 6, we show the quantized output of the network
by simulations and the predicted output by our analysis above.
The simulation has been done for 1000 test vectors and what
we show in the figure is the average Mean-Square-Error. We
can see that the analysis and simulations do match. Now, what
can one do with this analysis?

We usually have a requirement on the Probability of error
, Pe. We can use the analysis above to predict Pe of the
network for all different bit widths. This is shown in Figure 7.
The Original curve represents the performance of the network
without any quantization done and the quantized version is
obtained by the above analysis. If the requirement on Pe
require us to use less than 8 bits, we are better off with the
LP Analog approach (mixed-signal technique) and otherwise,
just stick to the digital implementation.

VI. CONCLUSION AND FUTURE WORK

In this paper, we derived the quantization effects in a SVM
implementing 2nd order polynomial kernel, and then verified
our results with simulations. Although in practice a 2nd order
polynomial kernel can give us the required accuracy (also

shown in the experimental results), We plan on extending the
analysis presented in this paper for polynomial kernels for the
sake of completeness. Finally, the analysis of the link between
probability of error and quantization variance is still missing. A
more advanced analysis would be required for that, in addition
to some further assumptions.

REFERENCES

[1] V. Vapnik. Estimation of Dependences Based on Empirical Data [in
Russian]. Nauka, Moscow, 1979. (English translation: Springer Verlag,
New York, 1982).

[2] C. Cortes and V. Vapnik. Support vector networks. Machine Learning,
20:273–297, 1995.

[3] V. Blanz, B. Sch¨olkopf, H. B¨ulthoff, C. Burges, V. Vapnik, and T. Vetter.
Comparison of view–based object recognition algorithms using realistic
3d models. In C. von der Malsburg, W. von Seelen, J. C. Vorbr¨uggen, and
B. Sendhoff, editors, Artificial Neural Networks — ICANN’96, pages
251 – 256, Berlin, 1996. Springer Lecture Notes in Computer Science,
Vol. 1112.

[4] T. Joachims. Text categorization with support vector machines. Technical
report, LS VIII Number 23, University of Dortmund, 1997. ftp://ftp-
ai.informatik.uni-dortmund.de/pub/Reports/report23.ps.Z.

[5] H. Drucker, C.J.C. Burges, L. Kaufman, A. Smola, and V. Vapnik.
Support vector regression machines. Advances in Neural Information
Processing Systems, 9:155–161, 1997.

[6] D. Anguita, A. Boni, S. Ridella, “A digital architecture for support vector
machines: theory, algorithm, and FPGA implementation” IEEE Trans. on
Neural Networks, vol. 14, pp. 993–1009, Sept. 2003.

[7] R. Genov, G. Cauwenberghs, “Kerneltron: support vector machine in
silicon” IEEE Trans. on Neural Networks, vol. 14, pp. 1426–1434, Sept.
2003.

[8] Yoo, Jerald, Long Yan, Dina El-Damak, Muhammad Awais Bin Altaf,
Ali H. Shoeb, and Anantha P. Chandrakasan. ”An 8-Channel Scalable
EEG Acquisition SoC With Patient-Specific Seizure Classification and
Recording Processor.” (2013): 1-15.

[9] Hosticka, Bedrich J. ”Performance comparison of analog and digital
circuits.” Proceedings of the IEEE 73, no. 1 (1985): 25-29.

[10] D. Anguita, S. Ridella, S. Rovetta, “Worst case analysis of weight
inaccuracy effects in multilayer perceptrons” IEEE Trans. on Neural
Networks, vol. 10, pp. 415–418, Mar. 1999.

[11] O.-J. Kwon, S.-Y. Bang, “Comments on: The effects of quantization
on multilayer neural networks” IEEE Trans. on Neural Networks, vol. 9,
pp. 718–719, Jul. 1998.

[12] G. Dündar, K. Rose, “The effects of quantization on multilayer neural
networks” IEEE Trans. on Neural Networks, vol. 6, pp. 1446–1451, Nov.
1995.

[13] Anguita, Davide, and Giovanni Bozza. ”The effect of quantization on
support vector machines with gaussian kernel.” In Neural Networks,
2005. IJCNN’05. Proceedings. 2005 IEEE International Joint Conference
on, vol. 2, pp. 681-684. IEEE, 2005.

