
Solving POMDP for the Detection of Golden
Cheeked Warbler using RBF-based Q-learning

Long Le
Department of Electrical and Computer Engineering

University of Illinois at Urbana-Champaign

Abstract—Viterbi decoding remains the best (performance-
wise) inference technique known today. However, it requires that
all data being present and only runs in batch mode. Therefore
it is only suitable for offline processing. A Bayesian filter, on the
other hand, sequentially processes data and hence can perform
inference online, but still requires all data samples. This paper
investigates a different technique that is designed to both process
data sequentially and control the usage of data samples optimally.
Such techniques is based on the popular framework for sequential
decision making called Partially Observable Markov Decision
Process (POMDP). The POMDP solution technique of choice was
Q-learning using radial basis function (RBF) neural network. The
application is the detection of an endangered bird species named
Golden Cheeked Warbler (GCW). Our result illustrated that it
is possible to use only 9.18% of the samples on average while
incurring only 9.07% detection error rate, compared to a full
Viterbi decoding.

I. INTRODUCTION

The application under consideration for this paper is the
detection of Golden Cheeked Warblers (GCW). GCW is an
endangered bird species [1] and hence information about
their behavior will be crucial for bird scientists to develop
preservation strategy. Some of the GCW’s behavioral infor-
mation can be inferred from their acoustic data [2]. Figure 1
shows samples of the recorded acoustic data, represented in
spectrogram, at multiple time scales. The first plot from the top
has the broadest time scale with the shaded region indicates the
time when the GCW is present. During its presence, a GCW
does not call all the time but instead rests between calls, as
illustrated in the second plot. Finally, the actual time-frequency
structure of a GCW’s call is shown in the last plot. Therefore,
it is possible to infer whether a GCW is in absent, calling or
resting state merely from the acoustic data.

Since the amount of data is large, it is desirable to automate
the inference process. There are various automatic inference
techniques such as Viterbi decoding and Bayesian filtering
[3]. Viterbi decoding remains the best (performance-wise)
inference technique known today. However, it requires that all

Fig. 1. Sample acoustic data represented using time-frequency analysis

data being present and only runs in batch mode. Therefore it
is only suitable for offline processing. A Bayesian filter, on the
other hand, sequentially processes data and hence can perform
inference online, but still requires all data samples. This paper
investigates a different technique that is designed to both
process data sequentially and control the usage of data samples
optimally. The last technique is based on a popular framework
for sequential decision making called Partially Observable
Markov Decision Process (POMDP). A brief review of the

POMDP framework is given in Sections II.
The reason for which the POMDP framework is chosen over

other sequential decision making framework such as recurrent
neural net [4] and sequential support vector machine [5] is
because POMDP has a strong mathematical background that
was designed specifically to solve sequential decision making
problems. On the contrary, recurrent neural network is based
originally on neural networks, which is a formalism for func-
tion approximation. Similarly, support vector machines was
originally formulated to solve linear classification problems.

While it is possible to apply the POMDP framework for
a complete state space inference of GCW, including absent,
calling, resting, we decided to restrict only to the problem
of detecting GCW’s presence for simplicity. A complete state
space inference will be a subject of future work. Despite such
simplification, in general, solving POMDP is computationally
hard. In fact, it has been proven to be PSPACE-complete [6].
Therefore approximated solution techniques are desirable for
practical purposes. This paper proposes a novel approximated
solution based on radial basis neural nets [7].

The rest of the paper is organized as follows. Sections II
and III give a brief review of the POMDP framework and its
solutions techniques. Section IV applies the framework to the
specific problem of GCW’s detection. Finally, results are given
and discussed in Section V.

II. THE POMDP FRAMEWORK.

A thorough survey of the POMDP framework and its
solution techniques can be found in [8], [9]. In this paper,
only key ideas are summarized for the purpose of discussion.

Markov decision process (MDP) is the original framework
for sequential decision making. It is a tuple of

< S,A, T,R >

where S is the state space, A is the action space, T is the
transition matrix/kernel that dictates the dynamic of states and
finally, R is the reward that express preference of certain action
in certain state. For example, in the GCW problem, the state
space can be absent, calling, resting. Namely,

s ∈ S = {absent, calling, resting} (1)

The actions can be two-fold and the action space can be
”declare present and sample next time”, or ”declare present
and do not sample next time”, or ”declare absent and sample
next time”, or ”declare absent and do not sample next time”.
Notationally,

a ∈ A = {PS,PN,AS,AN} (2)

One limitation of the MDP is that it assumes the states are
completely observable. However, that is not always the case.
For instance, in the detection of GCW problem, true state of a
GCW is not observed, it is inferred from the spectrogram. To
overcome this limitation, POMDP was proposed to generalize
MDP with partially observable states. POMDP is a tuple of

< S,A, T,R,O, Z >

where O is the observation space and Z is the emission matrix,
which specifies the probability of seeing each observation in
each state.

Unlike MDP where decision maker only needs to keep track
of the current state, POMDP requires the entire history of
observations being kept tracked. Obviously, this is not feasible.
Fortunately, [10] shows that the current posterior distribution
on the state space given the entire observation history, or
belief, is a sufficient statistics for the entire history. Thus
POMDP can be reformulated in the form of MDP using the
notion of belief state. A belief-state MDP is a tuple of

< B,A, T̄ , R̄ >

where B is the belief state space, which is a probability sim-
plex on the original state space, T̄ and R̄ are the transformed
versions of the original T and R. For example,

b ∈ B = {Pr(absent),Pr(calling),Pr(resting)}

Given the POMDP setup, solving POMDP means finding an
optimal policy function π∗, which is a mapping from belief
state to action. Namely,

π : B → A

Common techniques for solving POMDP is discussed in the
next section.

III. POMDP SOLUTION TECHNIQUES

This paper focuses on the infinite horizon POMDP. There-
fore, a discount factor γ is needed to ensure the existence
of a stationary policy [11]. There exists two main classes of
algorithm to find the optimal stationary policy: value iteration
and policy iteration, both of which rely on the celebrated
Bellman’s equation [10].

A. Value iteration

Value iteration sequentially find the optimal value function
for each horizon t. As t→∞, V ∗t (b)→ V ∗(b). This infinite
horizon optimal value function is then used to rank actions
and thus find the best policy. This class of algorithms can
be summarized using the following three equations. Various

algorithm differs only in the way they compute these equations
[9].

V ∗t (b) = max
a∈A

[R̄(b, a) + γ
∑
b′∈B

T̄ (b, a, b′)V ∗t−1(b′)]

Q∗(b, a) = R̄(b, a) + γ
∑
b′∈B

T̄ (b, a, b′)V ∗(b′) where V ∗t → V ∗

π∗(b) = arg max
a∈A

Q∗(b, a)

B. Policy iteration

Policy iteration, on the other hand, sequentially improves
the policy function πt(b) to yield better value V πt

t (b) at
each iteration. Ultimately the policy will converge to the
optimal stationary policy. This class of algorithms can also
be summarized using the following three equations.

V πt
t (b) = R̄(b, πt(b)) + γ

∑
b′∈B

T̄ (b, πt(b), b
′)V πt

t−1(b′)]

Qt+1(b, a) = R̄(b, a) + γ
∑
b′∈B

T̄ (b, a, b′)V πt
t (b′)

πt+1(b) = arg max
a∈A

Qt+1(b, a) until πt → π∗

C. Q-learning

In both value and policy iteration, the Q function, which
measure the value of being in a state and performing an action,
is merely an intermediate step to translate from the value
function to the policy function. In the Q-learning algorithm
[12], it is possible to iterate directly on the Q function without
first finding the value function. The algorithm can be described
by the following equations.

δ(st, at) = rt + γmax
a∈A

Q(st+1, a)−Q(st, at)

Q(st, at)← Q(st, at) + αδ(st, at)
(3)

where δ denotes the temporal difference [13] between suc-
cessive iterations and rt is the immediate reward, which is
a realization of the random variable R(s, a). Q-learning was
originally proposed as a model-free approach to solve MDP
problems, as there is no need for a transition matrix/kernel
in the calculation of temporal difference. It was also proven
to converge to the optimal Q-function under the condition
that all states are visited infinitely often [12]. This condition
effectively requires that the decision maker takes action not
only to exploit the best reward but also to explore the state
space. Hence a stochastic policy is desirable, and a commonly
chosen one is the softmax policy function, instead of a hard
max in value and policy iteration. Namely,

πt(s, a) =
eQ(s,a)/τ∑

a′∈A e
Q(s,a′)/τ

(4)

where τ is the Boltzmann temperature constant.

Fig. 2. Sigmoid neural net.

In order to generalize Q-learning from MDP to POMDP,
syntactically, one simply needs to replace s with b. However,
since the belief state space is continuous, the Q function cannot
be stored in a look-up table anymore. Instead, it needs to be
approximated using function approximation techniques. One
formalism of function approximator is the neural net.

D. Neural net as Q-function approximator

The two types of neural net considered in this paper are the
sigmoid neural net and the radial basis neural net [7]. Figure
2 shows the structure of a sigmoid neural net with M hidden
nodes. The total number of weights in the network includes
M +1 output weights and M ×|S| hidden weights. The input
to the network is a belief vector of dimension |S|, while the
output is the Q function for a particular action 1.

Sigmoid neural net has an interpretation based on a mathe-
matical fact that the value function is a piece-wise linear and
convex function of the belief state [14]. Namely,

V ∗t (b) = max
α∈νt

bTα

where νt is the space of all possible α vector at time t. Thus a
hidden node’s weights can be interpreted as an α vector. Using
sigmoid neural net to approximate Q function has already been
done in [13].

This paper uses a different neural net based on radial basis
functions (RBF) [7], which is shown in Figure 3. For M
hidden nodes, there is a total of M + 1 output weights and
M + 1 hidden centroid vectors Φ. The motivation behinds
using RBF is inspired by a new class of POMDP solution
techniques called point-based solvers [15]. The point-based

1While it is possible to define a single network with multiple outputs, each
for an action, it is harder to debug and therefore was not adopt in this paper

Fig. 3. Radial basis neural net.

approach keeps track of only reachable belief points instead
of the set νt whose size grows exponentially fast as the time
horizon increases. Each hidden centroid vector Φ can then be
interpreted as a reachable belief point.

Training an RBF neural net to approximate the Q function
has to be done using a stochastic gradient training algorithm
because the next belief vector depends on the current output
of RBF network. The pseudo code for training is given in
Algorithm 1 2.

IV. APPLICATION TO THE DETECTION OF GCW

This section applies the POMDP framework to the specific
problem of detecting GCW using acoustic data. Five hour
of recorded data were analyzed using a spectrogram with
Hamming window of 0.5 second length, 0.1 second increment
and 128 frequency points (see Figure 4).

A portion of the data were used to construct a finite obser-
vation space O. K-means, with k = 4, was used to quantized
vector slices of a spectrogram into four typical observations,
as shown in Figure 5. The first and last typical observations are
transient noise, while the third typical observation is stationary
noise. The second typical observation is the GCW’s song.

The state space and action space are given by Equation (1)
and (2).

Baum-Welch algorithm (EM on HMM) [3] was then used to
learn the state transition and emission matrices. The result is
presented in a state diagram (see Figure 6). The weight on each
edge denotes the transition probability. Notice that the absent
and resting states share the same observation distribution for

2The output weights are initialized by the uniform [0, 1] distribution and
the hidden centroid vectors are initialized using the Dirichlet distribution.

Algorithm 1 Training algorithm for radial basis neural net
(with a fixed spread constant σ) to approximate Q function.

for each iteration do

• Q(bt, a) = w0 +
∑M
i=1 wi exp{−‖b−Φi‖2

σ }, ∀a ∈ A
• Sample an action at according to (4) for POMDP
• Find next belief bt+1 using Bayes’ rule.
• Define target using Equation (3) for POMDP

t = r̄t + γmax
a∈A

Q(bt+1, a)

• Update Q(bt, at) using the following equations

y = w0 +

M∑
i=1

wi exp{−‖b− Φi‖2

σ
}

∂ε

∂wi
= (y − t)Φi, i = 0→M

∂ε

∂Φi
= (y − t)wi exp{−‖b− Φi‖2

σ
}b− Φi

σ
, i = 1→M

wi = wi −
∂ε

∂wi
, i = 0→M

Φi = Φi −
∂ε

∂Φi
, i = 1→M

end for

Fig. 4. Data spectrogram.

noise Pn while the calling state has the observation distribution
for GCW’s song Ps. The mux on each state is used to control
whether an observation is taken at the next time step.

The immediate reward function at each time step could be
defined as follows.

r̄t =I(at = {PS, AS})× λ+

I(at = {PS, PN})× (b(calling) + b(resting))+

I(at = {AS, AN})× b(absent)

Fig. 5. Quantized observations.

Fig. 6. State and observation model.

where I(·) is an indicator function and λ was selected to trade
off between the number of sample usage and the detection
accuracy. In this paper, λ was set at 0.6154 to achieve roughly
10% of sample usage on average. In addition, the discount
factor was set at 0.66.

Finally, the spread constant of the RBF neural net σ was
set at 0.01 and the Boltzmann temperature constant τ was set
at 0.06.

V. RESULTS AND DISCUSSION

The policy obtained by solving the POMDP problem de-
fined in Section IV using Algorithm 1 is shown in the first plot
of Figure 7. The tracked belief is also shown in the plot below.
As can be readily seen, the policy is very likely to declare
present and skip the next sample (the blue line) when its belief
about calling or resting is high; there is still a small chance of
taking new sample to update the belief (the green line). When
the belief about absent is high, the policy declares absent and
and skip next sample with high probability (the magenta line),
leaving only a small chance of taking new sample to update
the belief (the red line).

The last plot of Figure 7 shows the state estimates obtained
by running the Viterbi decoding algorithm. As discussed in
Section I, these estimates are the best possible and hence can

Fig. 7. Policy, belief and true state for one hour of data.

serve as a benchmark for how well the POMDP technique
works. Over five hour of data, the POMDP technique demon-
strates that it can use only 9.18% of the samples on average
and still incurring only 9.07% detection error compared to a
full Viterbi decoding.

VI. CONCLUSION AND FUTURE WORK

Unlike the classical Viterbi decoding and Bayesian filter-
ing algorithms, inference algorithms based on the POMDP
framework have great potential to perform inference tasks
online with efficient usages of samples. One way to solve
POMDP, i.e. to find the optimal policy, is to use Q-learning.
This paper proposes an alternative form of the Q-learning
algorithm based on RBF neural net. An application of this
algorithm for the detection of GCW has demonstrated that it
can performing inference tasks online efficiently. Future work
will investigate on whether there is any fundamental difference
in the performance between the different choices of neural net
to approximate the Q function, such as the sigmoid and the
RBF neural net.

REFERENCES

[1] W. Leonard, J. Neal, and R. Ratnam, “Variation of type B song in
the endangered golden-cheeked warbler (dendroica chrysoparia),” The
Wilson Journal of Ornithology, vol. 122, no. 4, pp. 777–780, 2010.

[2] D. Jun and D. Jones, “The value of sleeping: a rollout algorithm for
sensor scheduling in HMMs,” GlobalSIP, 2013.

[3] B. Hajek, “An exploration of random processes for engineers,” class
notes for ECE 534, 2009.

[4] J. Schmidhuber, “Learning complex, extended sequences using the
principle of history compression,” Neural Computation, vol. 4, no. 2,
pp. 234–242, 1992.

[5] N. de Freitas, M. Milo, P. Clarkson, M. Niranjan, and A. Gee, “Sequen-
tial support vector machines,” in Neural Networks for Signal Processing
IX, 1999. Proceedings of the 1999 IEEE Signal Processing Society
Workshop. IEEE, 1999, pp. 31–40.

[6] C. H. Papadimitriou and J. N. Tsitsiklis, “The complexity of markov
decision processes,” Mathematics of operations research, vol. 12, no. 3,
pp. 441–450, 1987.

[7] C. M. Bishop, Neural networks for pattern recognition. Oxford
university press, 1995.

[8] K. P. Murphy, “A survey of POMDP solution techniques,” environment,
vol. 2, p. X3, 2000.

[9] D. Braziunas, “POMDP solution methods,” University of Toronto, Tech.
Rep, 2003.

[10] D. P. Bertsekas, D. P. Bertsekas, D. P. Bertsekas, and D. P. Bertsekas,
Dynamic programming and optimal control. Athena Scientific Belmont,
1995, vol. 1, no. 2.

[11] E. J. Sondik, “The optimal control of partially observable markov pro-
cesses over the infinite horizon: Discounted costs,” Operations Research,
vol. 26, no. 2, pp. 282–304, 1978.

[12] C. J. Watkins and P. Dayan, “Q-learning,” Machine learning, vol. 8, no.
3-4, pp. 279–292, 1992.

[13] M. A. Wiering and T. Kooi, “Region enhanced neural q-learning for
solving model-based pomdps,” in Neural Networks (IJCNN), The 2010
International Joint Conference on. IEEE, 2010, pp. 1–8.

[14] E. J. Sondik, “The optimal control of partially observable markov
processes.” DTIC Document, Tech. Rep., 1971.

[15] G. Shani, J. Pineau, and R. Kaplow, “A survey of point-based pomdp
solvers,” Autonomous Agents and Multi-Agent Systems, vol. 27, no. 1,
pp. 1–51, 2013.

