
Preliminary version for evaluation: Please do not circulate without the permission of the author(s)
NEURAL NETWORKS 1

Improving Neural Network Learning by Modifying
the Output Target Function

Mijail Gomez, Student Member, IEEE,

Abstract—Neural Networks have been known to be diffi-
cult to train. In this paper an alternative method of training
neural network is shown. The method consist of modifying
the target output function such that noise, present in the
input, is used to regularize the learning parameters. We ap-
ply this modification to both supervised and representation
learning problems. For the supervised learning problem,
we compared with the standard method of training neural
networks and SVM. For representation learning we compare
with PCA, RBMs, and Denoising Auto-Encoder. Simulated
data was used to conduct the experiments.

Index Terms—Neural Networks, Regularization, Noise
Regularization, Representation Learning

I. Introduction

NEURAL Networks have an old history, dating back to
the 1940’s. In recent years there has been a spike in

neural network research, specifically in Deep Neural Net-
works. Motivated by this surge of excitement I chose to
learn more about neural networks.

An important property of neural networks, that lays
down the ground work, follows from the Cybenko-Hornik-
Funahashi Theorem: [3] [4] [6] [5]

Theorem 1 (Universal Approximation) Let f be contin-
uous, non-constant, bounded and monotone increasing.
For ε > 0, there is an integer N and ci, θi, wij such that

f̄(x1, . . . , xn) =

N∑
i=1

ciφ

 n∑
j=1

wijxj − θi



satisfies, maxx∈χ
∣∣f(x)− f̄(x)

∣∣< ε.

The theorem states that a multi-layer neural network
can approximate any continuous function f to any accu-
racy requiring any number of hidden nodes. This motivates
the use of multi-layer neural networks when trying to learn
complex models.

A drawback in implementing multi-layer neural networks
is that it can converge to a local minimum. And it also
might take a while to converge compared to other learning
algorithms. In this paper we explore a modification to
neural network and we applied it to a problem in detecting
meteors.

M.Gomez is with the Department of Electrical Engineering, Uni-
versity of Illinois Urbana-Champaign. gomez19@illinois.edu

Fig. 1: Top plot shows an underdense meteor echo, bottom
plot shows an overdense meteor echo

In a radar detection setting we wish to classify between
two different types of meteors echoes. The time series in
figure 1 shows the magnitude of two meteor echoes, an un-
derdense echo and an overdense echoe. From this problem
setting a method to train neural networks and to obtain
representations was motivated. We know a-priori that the
two meteor echoes will on average have distinctive features
(i.e., larger bandwith, decay rate). From this information
we can create a model for each class. This model can then
be used as a label to train a neural network.

There have been various modifications to supervised and
representation learning algorithms. The structure of the
paper is as follows. In a supervised learning setting, we first
give an overview of the theory behind noise regularization.
Then we show how by modifying the target function we
can achieve noise regularization and a well behaved error
function. The for learning representations we go over some
well-known algorithms; we go over auto-encoder, denoising
auto-encoder, and RBMs. And we show that our modifi-
cation can also be used to find representations in data. We
conclude with a series of experiments to show how our im-
plementation improves both in supervised learning and in
finding representations.

II. Supervised Learning

A. Neural Networks and Regularization

The basic neural network model consist of a series of
functional transformations. Let us consider a two layer
neural network. The zeroth layer (input layer) takes the
observations as the input, the first layer (hidden layer) con-
sist a weighted linear transformation of the inputs, and the



2
Preliminary version for evaluation: Please do not circulate without the permission of the author(s)

NEURAL NETWORKS

third layer (output layer) is a weighted linear transforma-
tion of the hidden nodes. More generally, the set of equa-
tions for multi-layer neural network is as follows. Layer l
computes an output vector zl using the output zl−1 of the
previous layer, starting with the n-th observation z0 = xn

,
zl = h(Wlzl−1), l = (1, . . . , L)

where the bias has been included with the input and the
hidden nodes, Wl is the set of weight coefficients we wish
to learn. The function h(· ) depends on the application,
typical functions are sigmoid, tanh, and the identity.[7]

In order to learn the weight parameter we assume we
have a training set consisting of of the set of tuples
{(x1, t1), . . . , (xN , tN )}, and we wish to minimize the er-
ror function

En = ‖tn − f(W ,xn)‖22.

The backpropagation algorithm is usually used to learn the
weight parameters. The algorithm consist of two phases
forward propagation and backward propagation. In the
backward propagation the weights are updated using gra-
dient descent, assuming the activation functions are differ-
entiable. Newton and Quasi-Newton methods are used to
speed up the convergence rate (BFGS, conjugate gradient,
etc.). [?]

Neural network models are well suited for large data sets,
since their capacity can easily be increased by adding more
layers or more units in each layer. However, big networks
with millions or billions of parameters can easily over-fit
even the largest of data sets. A well known method reduce
over-fitting is regularization.

Regularization is the process of incorporating additional
information to prevent over-fitting. This extra information
is usually of the form of a penalty for complexity, such as
restrictions for smoothness or bounds on the vector space
norm. To reduce over-fitting, adding an l2 penalty on the
network weights is one simple but effective approach. That
is,

Ẽn = ‖tn− f(W ,xn)‖22 +
λ

2
‖W ‖22

= En +
λ

2
‖W‖22

where λ is called the regularization parameter. The first
term enforces closeness to the data while the second
smoothness. [8]

Early stopping is an alternative to regularization, which
basically controls the effective complexity of a network.
A more recent method is dropout, during forward prop-
agation half of the activation functions in each layer are
deleted the error is backpropagated only through the re-
maining activation functions. [16]

B. Training Neural Network With Noise

It was shown, in [1], the addition of noise in a neural
network in some cases leads to improvements in general-
ization. A brief derivation will be shown. Let the noise
on the input vector be described by the random vector η.

The error function when training with noise can then be
written as follows

Ẽ =

∫ ∫ ∫ ∑
k

(yk(x + η)− tk)2p(tk|x)p(x)p̃(η)dxdtkdη,

where p̃(η) denotes the distribution function of the noise.
Assuming the noise amplitude is small, we can expand the
network output as a Taylor series in powers of η to give

yk(x+η) = yk(x) +
∑
i ηi

∂yk
∂xi

∣∣∣∣
η=0

+
∑
i

∑
j ηiηj

∂2yk
∂xi∂xj

∣∣∣∣
η=0

+O(η3).

Assuming the noise is Additive White Gaussian Noise
(AWGN), we have ∫

ηip̃(η)dη = 0∫
ηiηj p̃(η)dη = σ2δij

where σ2 is proportional to the variance of the noise. Thus
integrating over the noise we get,

Ẽ = E + σ2ER

where E is the standard sum-of-squares, and the extra
term ER is given by

ER =
∫ ∫ ∑

k

∑
i

((
∂yk
∂xi

)2
+ 1

2 (yk(x)− tk)∂
2yk
∂x2

i

)
p(tk|x)p(x)dxdtk.

provided the noise amplitude is small, so that the higher
order terms in the Taylor series expansion is valid.

The computation of ER involves second order deriva-
tives, which is computationally expensive. The complexity
can be reduced from the realization that the optimum so-
lution will be of the form, ymink = 〈tk|x〉+O(σ2). The
regularizing term then simplifies,

ER ≈
∫ ∑

k

‖∇yk(x)‖22 p(x)dx

where the tk variables have been integrated out. The sec-
ond equation follows from fact that the second term van-
ishes, at the minimum of the total error, with order pro-
portional to σ2,

Now, consider a neural network constructed with only
linear activation functions. The regularizing term, for
small noise, will be proportional to the l2 norm of the
weights. That is,

Ẽ = E+σ2ER

= E+σ2 ‖W‖22

This has the form of a regularization term added to the
usual sum-of-squares error, with the coefficient of the reg-
ularizer determined by the noise variance σ2.



Preliminary version for evaluation: Please do not circulate without the permission of the author(s)
NEURAL NETWORKS 3

C. Training Neural Network With Modified Target Func-
tion

It was shown in the previous section that adding noise to
the input of a neural network could improve performance
by regularizing; with the restriction that the noise be small
in amplitude. The problem with this concept is that most
of the signals we deal with in the real world inherently
contain noise. Therefore, the constraint, on small noise, is
not met and the performance will not improve.

We propose the following idea: Use the noiseless ver-
sion of the input signal as the target function of the neural
network. Intuitively the performance should improve be-
cause we are feeding the neural netowrk with more infor-
mation. Also, the error function is no longer an average
of 1-dimensional errors, but D-dimensional errors for each
observation (D is the dimension of the input data). And
the error function is minimizing the difference between the
signal approximation produced by the neural network and
the noiseless version of the input signal.

If the data has some structure. For example, the meteor
echo is a time series. And we know before hand how the
two types of meteor echoes behaves. We are able to esti-
mate the noiseless version of the meteor echo. One way to
estimate the noiseless signal can be by curve fitting or tak-
ing the average of the meteor echo observation for each of
our classes. This estimate of our noiseless meteor echo, can
be used as the Target label to our neural network. This,
intuitively should provide more information to the neural
network to learn. We shall show this by analyzing the error
function.

Consider a two layer neural network, using the mean
square error as a loss function, we are trying to minimize
the following cost function:

En =
∥∥tn−h(W2h(W1xn))

∥∥2
2

In binary classifcation the target consist of one node, t ∈
{−1,1}. If learning K different classes then t ∈ {−1,1}K ;
classification is made by picking the output node with the
highest magnitude. Now, let us change the binary target
function to a noiseless version of the input for each class.
We will restrict the activation functions to be linear i.e.,
identity. We will also assume that the noise is additive and
uncorrelated to the input data. Let our observed instance
be x̃n and our estimate of the noiseless observation is xn.
Then, using the corresponding estimate of the signal as
target, our error function becomes

En =
∥∥tn−W2W1x̃n

∥∥2
2

=
∥∥xn−W2W1(xn +ηn)

∥∥2
2

=
∥∥xn−W2W1xn−W2W1ηn)

∥∥2
2

= ‖xn−Wxn‖22 + ‖Wηn)‖22− 2(xn−Wxn)T (Wηn)

where W = W2W1. Assuming that the input and the
noise are uncorrelated, then the third term will average

out. Then we have the following,

E =
1

N

N∑
n=1

‖xn −Wxn‖22 + σ2 ‖W ‖22

where σ2 is proportional to the variance of the noise.
Notice that the noise acts like a regularizing parameter.

A similar expression was obtain in the previous section,
but no extra noise was added to obtain this regularizing
term. Another key difference is in the error term. It is
minimizing the difference between a clean noiseless signal
and the corresponding signal representation produced by
the neural network.

III. Representation Learning

An official definition for representation learning has not
been set yet. Many authors have their own perspective of
what it really means. Here we use two definitions, that is
applicable to our problem:

1. ”A good representation is one that disentangles the
underlying factors of variation.”[11]

2. ”A good representation is one that can be obtained
robustly from a corrupted input and that will be useful
for recovering the corresponding clean input.”[13]

A. Auto-Encoder and Denoising Auto-Encoder

Let us begin by defining a feature extracting function
in a specific parametrized closed form. This function,
that we will denote fθ, is called the encoder and allows
the straight forward and efficient computation of a fea-
tures vector h = fθ(x) from an input x. Another closed
form parametrized function gθ, called the decoder, maps
from feature space back into input space, producing a re-
construction r = gθ(h). Auto-encoders are parametrized
through their encoder and decoder and are trained using
a different training principle. The set of parameters θ of
the encoder and decoder are learned simultaneously on the
attempting to achieve the lowest possible reconstruction er-
ror E(x,r) – a measure of the discrepancy between x and
its reconstruction – on average over a training set,[11][9]

En(x̃,r) = ‖x̃n− r‖22
= ‖x̃n−gθ(fθ(x̃

n))‖22 .

Minimization of the reconstruction error is usually car-
ried by gradient descent or its variants. The minimization
of the reconstruction error aims to capture the structure
of the data generating distribution. The trivial solution,
learning the identity function, is a possibility when the
number of hidden nodes is larger than the dimensional-
ity of the input data vector. regularized auto-encoders,
a particular form of regularization consists in constrain-
ing the code to have a low dimension, and this what the
classical auto-encoder. Specifically if the activation func-
tions are purely linear then the auto-encoder essentially
becomes PCA (Principal Component Analysis). Using lin-
ear features limits the representations that can be learned.
Also, they cannot be stacked to form deeper, more abstract



4
Preliminary version for evaluation: Please do not circulate without the permission of the author(s)

NEURAL NETWORKS

representations since the composition of linear operations
yields another linear operation. A practical advantage of
training auto-enconder variants is that they define a sim-
ple tractable optimization objective that can be used to
monitor progress.

The denoising auto-encoder is a stochastic version of
the auto-encoder. By adding perturbations to the input
it forces the neural network to find hidden representations
not available in the train data set. That is, the learner must
capture the structure of the input distribution in order to
optimally undo the effect of the corruption process. This
also enforces the network to discover more robust features
and prevent it from simply learning the identity. [12][13]

B. Restricted Boltzmann Machines

Restricted Boltzmann Machines(RBM) is a stochastic
neural network. It is likely the most popular subclass of
Boltzmann machine. The RBM forms a bipartite graph
with the visible and the hidden nodes forming two layer
of vertices in the graph (and no connection between units
from the same layer). The conditional distribution over
the hidden units given the visible units factorize to give:

P (h|x) =
∏
i

P (hi|x),

where P (hi = 1|x) = sigmoid
(∑

jWijxj + ci

)
. The condi-

tional distribution over the visible units given the hidden
units factorize to give:

P (x|h) =
∏
i

P (xi|h),

where P (xi = 1|h) = sigmoid
(∑

jWijhi + bj

)
. The condi-

tional factorization property of the RBM immediately im-
plies that most inference we would like to make are readily
tractable. RBM training consist of maximizing the likeli-
hood of the training data. With N training examples, the
log likelihood is given by:

N∑
n=1

logP (xn; θ) =

N∑
n=1

log

N∑
h∈{0,1}dh

P (xn, h; θ)

where h is the hidden nodes, and dh is the number of
hidden units. Gradient descent is generally used to train
RBMs. The derivative of the log likelihood,

∂

∂θi

N∑
n=1

logp(x(n) =−
N∑
n=1

Ep(h|x(n))

[
∂

∂θi
EBMθ (x(n),h)

]
+

N∑
n=1

Ep(x,h)
[
∂

∂θi
EBMθ (x(n),h)

]
where EBMθ = xTWh− bTx− cTh is the enery function
describing the network structure. The RBM conditional
independence property implies that the expectation over

the data set is readily tractable. The Expectation over
the hidden units can be approximated using Gibbs sam-
pling. A common technique is to use Contrastive Diver-
gence, which basically runs Gibbs sampling for only a few
iterations.[11][15][14]

C. Training Auto-Encoder With Modified Target Output

The main idea behind the denoising auto-encoder is to
force the neural network to find hidden representations.
This is achieved by adding perturbations to the input, such
as noise. What if our data already is perturbed or has noise
inherently? Then adding more noise would not help in
finding hidden representations. Adding more noise might
actually make it hard to find any representations.

Recall the expression obtained when modifying the out-
put target function,

E =
1

N

N∑
n=1

‖xn −Wxn‖22 + σ2 ‖W ‖22

where σ2 is proportional to variance of the noise. The first
term is an auto-encoder but with noiseless inputs. The
second term is the regularizing term induced by the noise
present in the original input. The regularization term pre-
vents the neural network form learning the Identity. The
advantage over a normal auto-encoder is that we are learn-
ing from a noiseless input and the noise present in the
original signal only acts as a regularizing term. Second,
compared to the denoising aut-encoder we use the per-
turbations already present in the input signal to find the
hidden representation in the datum.

IV. Experiments

A. Simulated Meteor Echo and Model

We will simulate the problem of classifying between
under-dense and over-dense meteor echoes. Over-dense
trails have a plasma frequency that exceeds that prob-
ing frequency. This means that compared to under-dense
echoes they have a longer lifetime. For each type the du-
ration of the echo is consistent. The amplitudes can vary
between echoes and is correlated to the decay rate. There-
fore, a classifying algorithm is achievable and can be used
to detect when either of these meteor echoes is present.
Figure 1 from [2], shows the two types of meteor echoes.
From the real echoes we can simulate the over-dense and
under-dense meteor with the following equations,

f1(t) =A1 exp(−τ1(t− t1))u(t− t0) + η

f2(t) =A2 exp(−τ2(t− t1))u(t− t1) + (u(t− t2)−u(t− t1)) + η

where η is additive white Gaussian noise, Ai, i ∈ {1,2} will
model the different meteor amplitudes, τi, i ∈ {1,2} mod-
els the different decays rates, and ti ∈ {1,2} will model jit-
ter noise (random fluctuations in receive time). Figure 2,
shows various instances of the simulated echoes along the
corresponding noiseless version.

When training the neural network with the modified
output target function, the input will consist of several



Preliminary version for evaluation: Please do not circulate without the permission of the author(s)
NEURAL NETWORKS 5

instances of the signal plus noise as shown in Figure 2.
And the output target function will be the noiseless ver-
sion of those instances, i.e., the blue and orange signals in
Figure 2.

0 20 40 60 80 100
0.5

0.0

0.5

1.0
Class 1

0 20 40 60 80 100
0.5

0.0

0.5

1.0
Class 2

Fig. 2: Simulated Meteor Echo. Model (blue and orange),
and Observations

B. Supervised Learning

We construct a two layer neural network with 16 hidden
nodes. We training with the simulated data with binary
labels and the modified output target function. First we
will analyze how these two methods learn. One way to
achieve this is to look at the weights learned. In Figure 3,
we show the weights learned and the convergence rate for
both binary target and modified target functions.

0 20 40 60 80 1001.0

0.5

0.0

0.5

1.0 First Layer Weights, Modified Target

0 20 40 60 80 1001.0

0.5

0.0

0.5

1.0 First Layer Weights, Binary Target

Fig. 3: Weights learned, two layer neural network with 16
hidden nodes

We can see that the weights learned are significantly
different. The weights for the modified output target func-
tion are simpler and less noisier. This is very important

when trying to implement deeper neural networks, since
over-fitting is a problem.

To compare in terms of computational cost, we look at
the convergence rate. The convergence rate for a neural
network is how many iterations it needed to hit the min-
imum in the error function. From 4 we can see that the
modified output target function drastically outperforms bi-
nary target labels. We see an improvement of more than
half. This means that by modifying the output target func-
tion we have achieved a better behaved error function.

0 20 40 60 80 100 120 140 160
Iteration Number

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

E
n
or
m

MSE Convergence Rate
Binary Target
Modified Target

Fig. 4: Convergence rate, two layer neural network with
16 hidden nodes

Now, to test it as a classifier we compare error rates. Ta-
ble I and II show the error rates. We use SVM, with raidal
basis kernel, as our reference point. For a two layer neural
network with 16 hidden nodes, our implementation is su-
perior to the normal implementation of a neural network
(binary target). Another improvement is in implementing
deep neural networks. If we increase the number of layers
we see that the implementation of binary target starts fail-
ing and does not converge which leads to large standard
deviations. Our implementation does not suffer, actually
it improves the error rate getting closer to SVM.

Method error rate ± std
NN Binary Target (16) 3.46± 0.404
NN Modified Target (16) 2.37± 0.313
SVM (RBF kernel) 1.17± 0.268

TABLE I

Method error rate ± std
NN Binary Target (600× 2× 600) 8.65± 12.401
NN Modified Target (600× 2× 600) 1.51± 0.321
SVM (RBF kernel) 1.16± 0.256

TABLE II

C. Representation Learning

We compared versus PCA, RBM, and denoising auto-
encoder. The set up is as follows: For PCA we used the



6
Preliminary version for evaluation: Please do not circulate without the permission of the author(s)

NEURAL NETWORKS

weights from first two principles components with the high-
est eigenvalues. In RBM we constrained the number of
hidden units to be two. Similarly for the auto-encoder,
denoising auto-encoder, and our implementation we con-
strained the number of hidden nodes to be two. Then the
weights learned were used to project a new instance of our
datum to a two-dimensional space.

PCA/AutoEncoder, 2.5 percent error
Class 1
Class 2

RBM, 2.5 percent error

Denoising AutoEncoder, 2.0 percent error

Modified Target Function, 1.8 percent error

Fig. 5: 2 dimensional representations of the datum

It is clear the our method performs at least as good if
not better than the denoising auto-encoder. Further test
need to be made, were instead of using two hidden nodes
we use dimensions larger than the input vector. This will
force the neural network to find better representations.

V. Conclusion

In conclusion, we have shown that by modifying the out-
put target function of a neural network we were able to
improve performance both in supervised and representa-
tion learning. The results are not conclusive yet. First we
need to apply this method to real world data. Second in
representation learning, we have not used our method to
its full potential. It is our belief that it can perform better
at learning representation to train deep neural networks.
This is of course, future work.

References

[1] C. M. Bishop, J. J. T. Avenue Training with Noise is Equivalent
to Tikhonov Regularization, 1995

[2] S. Zhao, J. Urbina, L. Dyrud, R. Seal, Multilayer detection and
classification of specular and nonspecular meteor trails , Radio
Science, 46(6), 2011

[3] G. Cybenko, Approximations by superpositions of sigmoidal
functions, Mathematics of Control, Signals, and Systems, 2 (4),
303-314, 1989

[4] K. Hornik, Approximation Capabilities of Multilayer Feedforward
Networks , Neural Networks, 4(2), 251257, 1991

[5] S. Haykin, Neural Networks: A Comprehensive Foundation, Vol-
ume 2, Prentice Hall. ISBN 0-13-273350-1, 1998

[6] M. Hassoun, Fundamentals of Artificial Neural Networks, MIT
Press, p. 48, 1995

[7] C. M. Bishop, Pattern Recognition and Machine Learning, 2006
[8] T. Hastie, R. Tibshirani, J. Friedman, The Elements of Statistical

Learning (Second Edition), 2009
[9] Y. Bengio, Learning Deep Architectures for AI. Foundations and

Trends in Machine Learning , (Vol. 2, pp. 1127), 2009
[10] G. Hinton, R. Salakhutdinov, Deep Boltzmann Machines,

(2009)
[11] Y. Bengio, A. Courville, P. Vincent, Representation Learning :

A Review and New Perspectives, 134, 2012
[12] P. Vincent, H. Larochelle, Y. Bengion, P.-A. Manzagol, Ex-

tracting and composing robust features with denoising autoen-
coders, Proceedings of the 25th international conference on Ma-
chine learning - ICML 08, 10961103, 2008

[13] P. Vincent, Stacked Denoising Autoencoders : Learning Use-
ful Representations in a Deep Network with a Local Denoising
Criterion, 11, 33713408, 2010

[14] Q. V. le, J. Ngiam, A. Coates, A. Lahiri, B. Prochnow, A. Y.
Ng, On optimization methods for deep learning, 2011

[15] H. Schulz, M. Andreas, S. Behnke, Investigating Convergence
of Restricted Boltzmann Machine Learning, 1-9, 2010

[16] G. Hinton, N. Srivastava, A. Krizhevsky, I. Stutskever, R.
Salakhutdinov, Improving neural networks by preventing co-
adaptation of feature detectors, (2012)

[17] H. Larochelle, Y. Bengio, P. Lamblin, Exploring Strategies for
Training Deep Neural Networks, (2009)

[18] G. Hinton, R. Salakhutdinov, Reducing the Dimensionality of
Data with Neural Networks, (2006)


