
Towards a Low Power Hardware Accelerator for Deep Neural
Networks

Biplab Deka
Department of Electrical and Computer Engineering

University of Illinois at Urbana Champaign, USA
deka2@illinois.edu

Abstract—In this project, we take a first step towards building
a low power hardware accelerator for deep learning. We focus
on RBM based pretraing of deep neural networks and show
that there is significant robustness to random errors in the
pre-training, training and testing phase of using such neural
networks. We propose to leverage such robustness to build
accelerators using low power but possibly unrelaible hardware
substrate.

I. INTRODUCTION

Deep Neural Networks have recently been shown to provide
good performance on several AI tasks. Krizhevsky et al present
a Convolutional Neural Network with five convolutional layers
to classify the images in the ImageNet database into ten classes
[1]. Mohammed et al present a Deep Belief Network (DBN)
for for phone recognition that outperforms all other techniques
on the TIMIT corpus [2].

All these applications of deep neural networks have been
made possible by recent advances in training such networks.
Classical methods that are very effective on shallow archi-
tectures generally do not exhibit good performance on deep
architectures. For example, gradient descent based training
of deep networks frequently gets stuck in local minima or
plateaus [3].

Recent methods solve this issue by introducing a layer-wise
unsupervised pretraining stage for deep architectures. During
pretraining, each layer is treated separately and trained in a
greedy manner. After pretraining, a supervised training stage
is used to fine tune the weights assigned by pretraining. Several
deep neural network models have been proposed that enable
such unsupervised pretraining of the network. These include
Deep Belief Networks (DBNs) [4], Stacked Auto-Encoders [5]
and Convolutional Neural Networks [6]. A survey of these
models and associated pretraining methods can be found in
[7].

The long term objective of our work is to develop low power
hardware accelerators for deep learning. Such accelerators
could enable higher performance and better energy efficiency
for AI tasks than is possible using platforms available today.
To design very low power accelerators, we plan to use low
power hardware devices that might be inherently unreliable.
Such an approach has been shown to have significant power
benefits when designing ASICs for several signal processing
applications [8, 9].

For such implementations to be successful we plan on
exploiting the error tolerance already present in the pre-
training, training and testing algorithms for deep neural net-
works. In this project, we evaluate the robustness to errors
of Restricted Boltzmann Machine (RBM) based pretraining of
Deep Belief Networks. We perform evaluations for handwritten

This work was done as part of the course ECE544NA: Pattern Recognition
at University of Illinois at Urbana Champaign in Fall 2013.

digit recognition on the MNIST dataset. Our results show that
classification using Deep Belief Networks can be tolerant to
random errors and has the potential for being able to produce
acceptable outputs when implemented with low power (but
unreliable) hardware substrates.

We also believe that the testing stage for AI applications
might be implemented in mobile front-ends of systems and
as such would need to be very energy efficient and might
be implemented using a dedicated fixed point accelerator. As
such, we evaluate the precision requirements of a fixed point
implementation of the testing stage.

II. RELATED WORK

Previous work have shown promising speedups when deep
learning is implemented on GPUs. Raina et al used RBMs and
showed about 10x speedups over CPU implementations [10].
Farabet et al proposed an FPGA based accelerator architecture
for convolutional neural networks for vision problems [11].
Their architecture is based on a dataflow model. Dean et al
porposed another approach to enable deep learning on larger
models that uses a distributed cluster of computers and adapts
the learning algorithms accordingly [12]. Coates et al recently
proposed a combination of the GPU and cluster approach [13].

Outside of deep learning, recent work in the area of im-
age/video processing applications by Qadeer et al has shown
that it is possible to build programmable accelerators that offer
better energy and area efficiency than GPU-like architectures
but at the same time are more flexible (in terms of number of
potential applications they can support) than custom hardware
ASICs [14].

III. BACKGROUND

A. Training of Deep Belief Networks
This section provides a brief overview of training Deep

Belief Networks (DBNs). For a detailed treatment please refer
to [4].

Figure 1(a) shows a neural network (NN) with 2 hidden
layers and 3 sets of weights that the training procedure aims
to find. In the DBN setting, the pretraining phase treats the
NN as two separate Restricted Boltzmann Machines (RBMs)
as shown in Figure 1(b). Pretraining proceeds by performing
unsupervised training one RBM at a time starting from the
lowest RBM. For each RBM, it uses a procedure based on
contrastive divergence [15].

Once pretraining is complete, the weights have some rea-
sonable values (lets call it WPT). This is followed by back-
propagation based supervised training on the entire NN starting
with weights WPT and using the training data set. This fine
tunes the weights to WT . These weights (WT) are then used
during the testing phase to classify new input vectors. The
overall picture is shown in Figure 2.

In our evaluations, both pretraining and training stages use
minibatches where the weights are updated by looking at a
number of input vectors (corresponding to the minibatch size)
at a time. Pretraining and training are stopped when they have
gone through the entire training set a fixed number of times
(corresponding to the number of epochs). Note that pretraining
uses only the training inputs and not the training outputs
whereas training uses both. Also, the final metric that we care
about in our evaluations is the classification accuracy of the
neural network with weights WT on a separate test input set.

In this work, we focus on evaluating the robustness of the
pretraining, training and testing stages to random errors. We
expect at least the pretraining stage to be error resilient as any
errors during this stage would result in corruption of values
in WPT which have the potential of being corrected by the
training stage.

We also believe that in the future, a scenario might exist
where the deep neural networks are trained on clusters or
servers but are actually used for classification tasks on mobile
front-ends. In such a scenario, the testing phase would be
carried out on mobile devices and as such we also evaluate
the potential of implementing the testing stage using a low
precision fixed point implementation.

B. Classification Task

In this work, we focus on the task of handwritten digit
recognition. We use 60,000 training images and 10,000 test
images from the MNIST database for our experiments [16]. A
sample of the MNIST images are shown in Figure 3(a). Each
image is of size 28x28 pixels.

The neural network architecture used for our experiments is
shown in Figure 3(b). It has two hidden layers with 100 units
each.

C. Classification Without Errors

In this section we look at the classification performance of
neural networks (with and without pretraining) in classifying
handwritten digits.

1) Neural Networks Without Pretraining: Figure 4 presents
the classification error of a neural network with one hidden
layer that was trained using back-propagation. The default
parameters used were 4 epochs, minibatch size of 100 and 100
hidden units. We observe that increasing the number of epochs
reduces the classification error on the test set but the benefits
seem to slow down after 8 epochs. A minibatch size of 100
seems appropriate and increasing the number of hidden units
beyond 100 seems to have a limited effect on the classification
error on the test set.

Figure 5(a) and Figure 5(b) present the classification errors
for neural networks with 2 hidden layers and 100 + 50 units
and 100 + 100 units respectively. Both show similar decrease
in classification error on the test set as was seen in the case of
the neural network with one layer (Figure 4(a)). Figure 5(c)
compares the classification errors on the test set for all three
architectures (1 hidden layer, 2 hidden layers with 100 and
50 units, and 2 hidden layers with 100 and 100 units).

2) Effect of Pretraining: In this section, we look at the
effect of pretraining on the weights and the final classification
errors of the neural network with 2 layers with 100 and 100
units.

Figure 6 presents a visual representation of the weights of
the 100 hidden units of the first hidden layer. Each image there
has 28x28 pixels each of which represent the weight of the
connection of that unit to the corresponding pixel in the input
image. As can be seen in Figure 6(a), right after pretraining,
the weights begin to detect specific shapes in the input images.
Training refines these weights as shown in Figure 6(b) but
the changes are small and can hardly be perceived by visual
inspection.

Although, the changes made by the training stage is small,
it has a significant impact on the final classification error on
the test set. Figure 7 shows the change in classification error
during testing using a neural network that used the pretraining
weights for the hidden layers (training changed the weights of
the output layer only) and using a neural network that updated
the weights of the hidden layers during training. For example,
training using 16 epochs reduces the classification error during
testing by more than a factor of half.

Figure 8 presents the effect of increasing the number of
epoch during pretraining and during training on the final test
error rate. We observe that increasing the number of epoch
during training is more beneficial as compared to increasing
number of epochs during pretraining.

Fig. 7. The effect of supervised training on classification errors.

Fig. 8. The effect of increasing number of epochs of pretraining and training.

IV. ERROR INJECTION METHODOLOGY

In this section, we present our methodology for evaluating
the robustness of the pretraining, training and testing stages to
random errors. We also present our methodology for evaluating
the precision requirement for a fixed point implementation of
the testing stage.

(a) (b)

Fig. 1. (a) A neural network with two hidden layers (b) Pretraining in a DBN decomposes the neural network into Restricted Boltzmann Machines (RBMs)
which are then trained one at a time from the bottom up.

Fig. 2. Various steps in using a DBN for classification. In this work we study the effect of random errors on the pretraining, training and testing stages and
that of quantization errors on the testing stage.

A. Error in Pretraining

To emulate errors in pretraining we corrupt the weights
obtained after pretraining (WPT) and let the subsequent stages
(training and testing) continue without errors. The number of
errors introduced in WPT is decided by the fault rate. A fault
rate of 1% means that on an average, 1 out of 100 weights
in WPT will be corrupted. We attempt to assign a reasonable
value to the corrupted weights by choosing their values from a
distribution that is close to the distribution of weights in WPT

without errors (shown in Figure 9(a)). We approximate this
distribution by a normal distribution whose mean and variance
we estimate to be µ and σ. Based on these estimates the
erroneous weights are drawn as follows under three scenarios:

1) Nominal: In the nominal case, the erroneous weights are
drawn from a normal distribution with parameters µ and
σ.

2) Severe: In the severe case, the erroneous weights are
drawn from a normal distribution with parameters µ and
10σ.

3) Corrected: In the corrected case, we look at the possi-
bility of correcting erroneous weights by approximating
them to be the average of the nearby weights. This of

course depends on being able to detect when errors
occur. Also, we only apply this to first layer weights
as it is has a clear notion of nearby weights (weights
from nearby pixels). To emulate this scenario, we corrupt
weights in WPT by replacing them with the average of
their nearby weights.

B. Error in Training

To emulate errors in training we follow an approach very
similar to the one for emulating error in pretraining (Section
IV-A). We estimate the mean and variance (µ and σ) of the
weights in WT and use that to corrupt weights under three
scenarios: nominal, severe and corrected.

C. Error in Testing

To emulate errors in testing, we corrupt the output activa-
tions of the hidden layers at a given fault rate. To assign the
corrupted output activations a reasonable value, we look at
the distribution of output activations of the two layers (Shown
in Figure 9(c) and Figure 9(d)). Since, the output units have
a sigmoid non-linearity, nost values are either 0 or 1. To
make things simpler, instead of accurately modeling these

(a) (b)

Fig. 3. (a) Sample digits from the MNIST dataset of handwritten digits (b) The neural network architecture used for our digit recognition task.

(a) (b) (c)

Fig. 4. Effect of varying different parameters in the training of a NN with 1 hidden layer on its classification error (default parameters: 4 epochs, mini-batch
size of 100 and 100 units) (a) Effect of varying the number of training epochs (b) Effect of varying the mini-batch size (c) Effect of varying the number of
units in the hidden layer.

(a) (b) (c)

Fig. 5. Classification errors of NNs with two hidden layers (a) NN with two hidden layers with 100 and 50 units (b) NN with two hidden layers with 100 and
50 units (c) Comparison of the two layer networks with the one layer network.

distributions, we used a uniform distribution in the range [0,1]
to draw the corrupted values.

V. ERROR INJECTION RESULTS

This section presents the results of our error injection
experiments.

A. Pretraining
Figure 10 shows the classification error rate on the test set

in presence of errors in pretraining under the three different
error scenarios. We observe that for nominal errors an error
rate as high as 10 − 20% has classification accuracies very
close to that of the error free case. For severe errors, an error
rate of 1% has classification accuracies very close to that of the
error free case. Even with 100% error rate, the classification
works well compared to a completely random classification
(for 10 classes a random classifier would have an error rate of

90%). We also observe that the correction scheme of replacing
corrupted layer 1 weights with the average of their neighboring
weights performs really well even at very high error rates (say
30%).

B. Training
Figure 11 shows the classification error rate on the test set

in presence of errors in training under the three different error
scenarios. We observe that for nominal errors an error rate
as high as 10 − 20% has classification accuracies very close
to that of the error free case. For severe errors, an error rate
of 1% has classification accuracies very close to that of the
error free case. At higher error rates, the classification becomes
almost random (it approaches an error rate of 90%). We also
observe that the correction scheme of replacing corrupted
layer 1 weights with the average of their neighboring weights
performs really well even at very high error rates (say 30%).

(a) (b)

Fig. 6. First layer weights after (a) pretraining (1 epoch) (b) training (4 epochs).

(a) (b) (c) (d)

Fig. 9. (a) Distribution of weights after pretraining (WPT) (b) Distribution of weights after training (WT) (c) Distribution of output activations of hidden
layer 1 (d) Distribution of output activations of hidden layer 2

C. Testing

Figure 12 shows the classification error rate on the test set
when errors in testing are present in either of the two hidden
layers or in both layers. We observe that for errors with error
rate as high as 1 − 10% the classifier still has acceptable
classification accuracies.

Fig. 12. Classification error rate on the test set with errors in testing.

VI. PRECISION REQUIREMENTS FOR TESTING

We imagine a scenario where the weights for the neural
network are found by performing pretraining and training
with double precision operations (possibly on a server) and
then classification is performed on mobile devices using low
precision fixed point operations. We performed evaluations to
determine the number of bits required to represent the weight
during testing.

To do so, we first start with double precision weights found
after training and quantize them according to different fixed
point representations. We then use these quantized weights
during the testing stage which is still implemented in floating
point. The fixed point representations used are shown in Figure
13. We used 1 sign bit and 5 integer bits. The number of
fractional bits was varied and the effect on classification error
on the test set was evaluated. The results are presented in ??.
We observe that 6 fractional bits exhibit the same accuracy as
that of a double precision implementation.

This gave us an initial estimate of the precision required to
represent the weights. We fixed our weights to have a fixed
point representation with 12 total bits out of which 6 were

(a) (b) (c)

Fig. 10. Classification error rate on the test set with errors in pretraining (a) Nominal Errors (b) Severe Errors (c) Layer 1 results showing Corrected Errors

(a) (b) (c)

Fig. 11. Classification error rate on the test set with errors in training (a) Nominal Errors (b) Severe Errors (c) Layer 1 results showing Corrected Errors

fractional bits. We then performed detailed fixed point sim-
ulations of the testing stage with all operations implemented
in fixed point. We experimented with different bit widths for
the input, output and activation of each layer and evaluated the
effect on the classification error on the test set. The architecture
presented in Figure ?? with 10 total bits (and 8 fractional
bits) for input, output and activations was found to have the
same accuracy as that of a double precision floating point
implementation.

Fig. 13. Fixed point representation with variable number of bits to represent
the fractional part.

VII. CONCLUSION

In this work, we evaluated the effect of random errors on
the pretraining, training and testing stages of using a deep
neural network based on training it as a DBN. Our results
show that for nominal errors in both pretraining and training,
the classification accuracy at 10− 20% error rate is similar to
that of the error free case. For severe errors in both pretraining
and training, the classification accuracy at 1% error rate is
similar to that of the error free case. We also showed that one
possible correction strategy to correct corrupted weights of the
first layer (either in pretraining or training) is to replace it with
the average of the neighboring weights. In such scenarios, the

Fig. 14. Classification error on the test set for different number of bits in
the fractional part of the fixed point representation.

classification accuracy at 30−50% error rate is similar to that
of the error free case.

We also performed fixed point simulations to determine the
precision required for representing various quantities (weights,
input, output, hidden layer activations) in fixed point for the
case when the testing stage is implemented using a fixed point
implementation. We found that it is indeed possible to have low
precision implementations of the testing stage in fixed point.
We presented a low precision fixed point implementation that
had the same accuracy as a double precision implementation.
Our fixed point implementation represented the weights with
12 bits and the input, output, and hidden layer activations 10
bits.

This high tolerance to errors indicates that it might indeed
be possible to implement accelerators for deep neural networks
using low power but unreliable hardware substrates.

Fig. 15. A fixed point architecture that has the same classification accuracy as
the double precision implementation. (m,n) means the number is represented
using m total bits and n fractional bits in the fixed point implementation.

REFERENCES
[1] A. Krizhevsky, I. Sutskever, and G. Hinton, “Imagenet classification with

deep convolutional neural networks,” in Advances in Neural Information
Processing Systems 25, 2012, pp. 1106–1114.

[2] A.-R. Mohamed, T. N. Sainath, G. Dahl, B. Ramabhadran, G. E. Hinton,
and M. A. Picheny, “Deep belief networks using discriminative features
for phone recognition,” in Acoustics, Speech and Signal Processing
(ICASSP), 2011 IEEE International Conference on. IEEE, 2011, pp.
5060–5063.

[3] Y. Bengio, P. Lamblin, D. Popovici, and H. Larochelle, “Greedy layer-
wise training of deep networks,” 2007.

[4] G. E. Hinton, S. Osindero, and Y.-W. Teh, “A fast learning algorithm for
deep belief nets,” Neural computation, vol. 18, no. 7, pp. 1527–1554,
2006.

[5] P. Vincent, H. Larochelle, Y. Bengio, and P.-A. Manzagol, “Extracting
and composing robust features with denoising autoencoders,” in Proceed-
ings of the 25th international conference on Machine learning. ACM,
2008, pp. 1096–1103.

[6] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based learning
applied to document recognition,” Proceedings of the IEEE, vol. 86,
no. 11, pp. 2278–2324, 1998.

[7] L. Arnold, S. Rebecchi, S. Chevallier, and H. Paugam-Moisy, “An
introduction to deep learning,” in ESANN, 2011.

[8] J. Choi, E. P. Kim, R. A. Rutenbar, and N. R. Shanbhag, “Error
resilient mrf message passing architecture for stereo matching,” in Signal
Processing Systems (SiPS), 2013 IEEE Workshop on, 2013, pp. 348–353.

[9] E. Kim, D. Baker, S. Narayanan, D. Jones, and N. Shanbhag, “Low
power and error resilient pn code acquisition filter via statistical error
compensation,” in Custom Integrated Circuits Conference (CICC), 2011
IEEE, 2011, pp. 1–4.

[10] R. Raina, A. Madhavan, and A. Y. Ng, “Large-scale deep unsupervised
learning using graphics processors.”

[11] C. Farabet, Y. LeCun, K. Kavukcuoglu, and E. Culurciello, Large-scale
FPGA-based convolutional networks, 2011.

[12] J. Dean, G. Corrado, R. Monga, K. Chen, M. Devin, Q. V. Le, M. Z.
Mao, M. Ranzato, A. W. Senior, P. A. Tucker, K. Yang, and A. Y. Ng,
“Large scale distributed deep networks,” in NIPS, 2012, pp. 1232–1240.

[13] A. Coates, B. Huval, T. Wang, D. J. Wu, B. C. Catanzaro, and A. Y.
Ng, “Deep learning with cots hpc systems,” in ICML (3), 2013, pp.
1337–1345.

[14] W. Qadeer, R. Hameed, O. Shacham, P. Venkatesan, C. Kozyrakis,
and M. A. Horowitz, “Convolution engine: balancing efficiency &
flexibility in specialized computing,” in Proceedings of the 40th Annual
International Symposium on Computer Architecture. ACM, 2013, pp.
24–35.

[15] G. E. Hinton, “Training products of experts by minimizing contrastive
divergence,” Neural computation, vol. 14, no. 8, pp. 1771–1800, 2002.

[16] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based learning
applied to document recognition,” Proceedings of the IEEE, vol. 86,
no. 11, pp. 2278–2324, 1998.

	Introduction
	Related Work
	Background
	Training of Deep Belief Networks
	Classification Task
	Classification Without Errors
	Neural Networks Without Pretraining
	Effect of Pretraining

	Error Injection Methodology
	Error in Pretraining
	Error in Training
	Error in Testing

	Error Injection Results
	Pretraining
	Training
	Testing

	Precision Requirements for Testing
	Conclusion

