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ABSTRACT

EGG, which depicts the degree of contact between vocal folds, is a
measurable proxy for glottal pressure wave, and thus contains infor-
mation of pitch and GCI. In this project, I proposed a TDRNN, or
a nonlinear ARMA filter, that turns input speech waveforms to ap-
proximation of EGG, which can be further applied to pitch tracking
or GCI location. Two baseline systems, a linear MA filter and a non-
linear MA filter, are also experimented and evaluated. Preliminary
experiments have confirm the ability of the proposed system to esti-
mate EGG, and further analysis discloses more interesting findings.

Index Terms— TDRNN, EGG, nonlinear ARMA filter

1. INTRODUCTION

According to the popular source-filter model of speech, the deriva-
tive of glottal pressure wave is generally regarded as the excitation of
the source-filter model [1]. Therefore, it bears information of group
delay and excitation period, and is essential to speech processing
tasks such as pitch tracking and pitch-synchronous analysis.

However, so far there hasn’t been a robust way of measuring
glottal pressure wave. Although there have been many algorithm-
s estimating it [2], these algorithms can only be partly verified by
either synthetic data or pitch tracking.

A measurable proxy for glottal pressure wave is the electroglot-
tograph [3], or EGG, which measures the degree of contact between
two vibrating vocal folds. Experiments show that there exist a reli-
able nonlinear relationship between EGG and glottal pressure wave
[3]. Although EGG contains less information than glottal pressure
wave (information is lost when the vocal folds are completely a-
part), it still preserves information of GCI, or glottal closure in-
stance, where short-time energy is highest within a period, and there-
by group delay and pitch. In fact, there are many datasets whose
pitch labels are obtained from EGG.

Therefore, if there is a way to learn the relationship between
speech waveform and EGG, it will have great potentials in GCI lo-
cating and pitch tracking. Neural network is a popular and effective
approach to learn nonlinear relationship between two signals, given
that its architecture and nonlinearity are carefully determined, and
so is suitable for our task.

This paper proposes to estimate EGG from speech waveform us-
ing neural network. The proposed system produces EGG estimates
in real-time, and thus can be regarded as an non-linear filter. As will
be analyzed in the next section, feedback loop is needed for more
accurate estimation, making it an ARMA filter. The resulting archi-
tecture is thus time delay recurrent neural network (TDRNN).

The rest of the report is organized as follows. Section 2 dis-
cusses the architecture of the neural network; section 3 derives nec-
essary training algorithms; section 4 gives some results and some

interesting analyses of some preliminary experiments; and section 5
concludes the report and points out further research directions.

2. ARCHITECTURE

The general architecture of the proposed TDRNN is given by figure
1, which combines DFI representation, where Z ! represents unit
step time delay. From this figure, it is straightforward that the archi-
tecture can indeed be regarded as a nonlinear ARMA filter. There is
a single output node, which approximates the real-time EGG wave-
form. The following subsections will discuss detailed settings, such
as the number of nodes and layers etc.
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Fig. 1. General architecture of the proposed TDRNN.

2.1. Source of Nonlinearity

To avoid determining the network architecture too heuristically, it
is necessary to discuss about the sources of nonlinearity. As men-
tioned in section 1, the relationship between speech waveform and
EGG is connected by glottal wave, and so the nonlinearity must
come from the relationship between either glottal wave and EGG,
or glottal wave and speech waveform.

The first source of nonlinearity is the nonlinear relationship be-
tween glottal wave and EGG, which is obvious. The second non-
linearity comes from the coupling between vocal tract and glottal
vibration. It has been well studied [4] that the wave reflected by
the vocal tract and propagating back to the glottal area will interact
with the glottal vibration, which induces nonlinearity, generally in
the form of wider first formant.



The third source, which I believe is the most important one,
lies in the changing vocal tract. Although, according to the source-
filter model, vocal tract can be regarded as a LTI system within a
very short time period, which means the relationship between glottal
wave and speech waveform is linear in short time scope, the sys-
tem keeps changing slowly over time, contributing to nonlinearity.
An intuitive way of understanding this is that in order to determine
which linear filter to apply, a phone recognition procedure has to be
performed first, and this recognition procedure is generally nonlin-
ear.

2.2. MA and AR orders

MA order is how many points of speech waveform should be in-
cluded as input. The choice of MA order should be based on two
considerations. On one hand, it should be no less than the number
of poles of the vocal tract filter, because the neural net performs the
inverse filtering to the vocal tract filter. It is generally believed that
10 poles are enough for approximating the vocal tract, and so MA
order should be at least 10.

On the other hand, as discussed in the previous subsection, the
speech input should bear enough information for phone recognition.
Common features for speech recognition, such as MFCC and LPC,
are generally extracted from frames that are around 30ms long. In
our experiment, the sampling rate of the input speech is 10kHz.
Based on these considerations, I set the MA order to 301, 150 lag
and 150 ahead.

AR order is how many previous output should feed back to the
network. By similar consideration, AR order should at least match
the zeros of the vocal tract. Vocal tract zeros are induced by the par-
allel connection of vocal tract, nasal tract and glottal tract, each of
which can be regarded as an all-pole system. With simple deriva-
tions, it can be proved that the number of zeros shall not exceed the
number of poles, which is 10 by previous discussion. For research
purpose, I set AR order to 10.

2.3. Layers and Hidden Nodes

To improve convergence and for simplicity, I apply only 1 hidden
layer. According to section 2.1, the number of nodes in this hidden
layer should suffice to approximate nonlinear mapping between glot-
tal wave and EGG, and perform phone recognition. While, heuristi-
cally, a few hidden nodes are enough for the former purpose, the lat-
ter purpose requires the number of hidden nodes at the order of the
total number of phones in the language. In English, there are around
50 phones, and so shall be the number of hidden nodes. Howev-
er, within limited time, it is too hasty to train such a network on a
training set large enough to cover all the phones. Instead, I set the
number of hidden nodes to 3 and select a small test set. The impact
on generalization capability will be discussed in section 4.

2.4. Nonlinearities and Stability

The choice of nonlinearities should take into account stability issue.
In filter design, we are often concerned about BIBO stability, which
means if the input is bounded, then the output is bounded. In linear
systems, a sufficient condition for BIBO stability is that the system
is causal and all the poles, if any, lie within the unit circle. In nonlin-
ear systems, however, I don’t know of any simple theorems, even if
they exist. Instead, stability can be achieved by nonlinearities with
bounded output, such as the hyperbolic tangent.

In the proposed system, hyperbolic tangent is applied to all the
hidden nodes, but no nonlinearity, or linear nonlinearity, is applied to

the output node. This is because we don’t know beforehand what the
output EGG is bounded by, and it is inefficient to predefine the range.
It can be easily proved, by Cauchy-Schwarz, that the boundedness
of the hidden nodes is enough to ensure boundedness of the output:
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where y is the output node; z is the hidden nodes; w and c are
weights connected the hidden layer and the output node; K is the
total number of hidden nodes. The notation will be discussed in
detail in the next section. From (1), it can be seen that the network
learns the output range by learning the weights.

2.5. Baseline Systems

To compare system performance, two alternative systems are also
experimented. The first system is a simple linear MA filter, or equiv-
alently two-layer neural net without nonlinearities, with the same
MA orders. The second system is a nonlinear MA filter, which is
the same as the proposed system, except that there are no feedback
loops.

Theoretically, the proposed system should perform best, fol-
lowed by the nonlinear MA filter, and then by linear MA filter, but
the convergence rate is reversed. Linear MA filter has analytical so-
lutions, and the nonlinear MA filter should converge faster than the
proposed system. An efficient training algorithm, therefore, will be
to initialize the weights based on these alternative systems, which
will be discussed in the next section.

3. TRAINING

3.1. Notations

Before any training algorithm is derived, it is necessary to define no-
tations, which is similar to those used in class. s[t] denotes speech
waveform, [[t] denotes EGG waveform, y[t] is the output of nonlin-
ear filter. y[t] should be as close to [[t] as possible. The squared error
is adopted as the error metric.

e=> e=>_ (U-yl)? (@)

The input vector at time ¢ is defined by
@ = [s[t — P),- st +Q,y[t — M],-- ,ylt—1]]" 3

where P = Q = 150, and M = 10 in my settings. Let z; denote
the hidden nodes at time ¢ and a: denote intermediate output that
satisfies

z; = tanh (a;) = tanh (b + Wa,) 4)

where b and W' are weights connecting input nodes and hidden n-
odes. z:, a; and b are all K-by-1 vectors where K = 3 in this
experiment. W is a K-by-(P + Q 4+ M + 1) matrix. The relation
between the hidden nodes and output is given by

y[t] = ¢+ wz: )

where ¢ and w are weights connecting hidden nodes and the output.
w is a 1-by-K vector.



For the nonlinear MA filter, notation is largely the same, except
that the input vector becomes

xe = [s[t—P],--- ,s[t—l—Q]]T (6)

The notations for linear MA filter differ further by the input-
output relationship:

y[t] =b+ Wz, (7)

3.2. Training Algorithms for Baseline Systems

Training algorithms for baseline systems have been well covered in
class. Here I list all the relevant algorithms only to demonstrate that
I understand them.

3.2.1. Pseudo-Inverse for the Linear MA Filter

The optimal weights for the linear MA filter can be solved analyti-
cally using pseudo-inverse:

[bOPt7 Wopt} = (XXT)71 Xy (8
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3.2.2. Error Back Propagation for the Nonlinear MA Filter

The optimal weights for the nonlinear MA filter can be solved using
gradient descent, and the gradient of weights can be obtained using
error back propagation. Define
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where X denotes element-wise multiplication. Therefore, the gradi-
ents of weights can be calculated by
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3.3. Error Back Propagation Through Time

For Nonlinear ARMA filter, there are dependencies among nodes
at different times, and therefore the gradient calculation is different
from that for nonlinear MA filter. However, the TDRNN is still a
feed forward network, and BP algorithm is still applicable.

Since the output is used as future input, the gradient with respect
to the output at time ¢ should include errors propagating back from
future times. Specifically

Oe
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where m; is the transpose of the i-th column of the weight matrix
W. P+ Q+ 1+ 7 is where y[t] is located in the future input vector
xiy+r whenl <7 < M.

The definition of §,,; is the same as in (11), but notice that it
is no longer equal to d¢¢/da:. Since the architecture within time ¢
is the same as in the case of nonlinear MA filter, (12) and (13) still
hold. The time complexity of this algorithm is still O (W N), where
W is total number of weights.

3.4. Initialization

To avoid being tracked in local optimum and to accelerate conver-
gence, initial weights should be set carefully. It is generally believed
that deep architectures converge more slowly than shallow structures
due to increased nonlinearity. Although there is only one hidden lay-
er for each time, experiments show that the feedback loops make
convergence rate low, possibly due to the high equivalent depth.
Comparatively, the nonlinear MA filter converge much faster, and
therefore it is useful to initialize using the converged weights of the
nonlinear MA filter.

Another advantage for this method is that the convergence of
the nonlinear MA filter can be accelerated by Lavenberg-Marquadt
algorithm, but the nonlinear ARMA filter cannot. This is because
LM approximation requires calculating d¢; /Ow. Since ¢ will prop-
agate back to all previous times, calculating e /Ow requires O (t)
operation. The total complexity, therefore, is O (W2 N 2) instead of
O (W°N).

The initialization in my implementation is as follows. After the
optimum of W,,,,; and w,¢ are obtained for the nonlinear MA filter,
set

Wy = [Woptv O]

Wo = Wopt

15)

as the initial weights for the nonlinear ARMA filter, where 0 is a K-
by-M zero matrix. The idea is to set the weights for AR component
to 0 and keep the rest the same.

4. EXPERIMENTS

4.1. Configuration

The experiments are performed on the Edinburgh dataset[5], which
contains 50 utterances of a male speaker and 50 of a female speaker,
as well as their simultaneous EGG’s. Both the speech waveforms
and EGG’s are down sampled to 10kHz. As is mentioned in section
2.3, the training set should be set small to accelerate convergence.
Therefore, the training set contains only 1 utterance “Where can I
park my car” by the male speaker, and the test set contains the rest



49 utterances by the same speaker. Female speech is not used for
now. All 3 architectures are trained and tested on the same partition
of the dataset.

4.2. Statistics and Overview

The average squared error (ASE) is defined as

ASE = ZjNi Zi:zt:(y[t] —1[t])? (16)

where ¢ goes through all test/training utterances and Nj is the total
number of sample points in the ¢-th utterance.

Table 1 shows the ASE on the training and the test set of the
three different systems. From the result on training set, we can see
that by adding a 3-node hidden layer, the error drops by more than
half, which confirms my previous analysis that the relation between
speech waveform and EGG is indeed nonlinear. The error drops fur-
ther by around 5% when feedback loop is introduced. The improve-
ment is not huge, which may indicate that the zeros of the vocal tract
exist, but are not significant.

System Training Test
Linear MA 0.0051 0.0039
Nonlinear MA 0.0018 0.0036
Nonlinear ARMA  0.0016 0.0035

Table 1. Average Squared Error

The results on the test set reflect the problem of over-fitting,
which results from insufficient model complexity as well as small
test dataset. First, although the advantage of the nonlinear ARMA
architecture over the other two is generalizable the test set, the differ-
ence is too small to be significance. Second, the ASE on the training
set is abnormally greater that those on the test set, especially for the
linear MA filter, which suggests that the test utterance may be an
outlier. This problem can be solved by increasing complexity and
test set, which will be a future research direction.

Figure 2 shows the nonlinear ARMA output as well as its EGG
of two consecutive voiced segments of the training utterance. Gen-
erally speaking, the fine structure of the speech waveform is largely
filtered out, though there is some remaining. The differences in out-
put waveform between the two voiced segments, where the original
speech waveform differs a lot, are greatly eliminated. However, a
serious problem is that the system is unable to perform reliable UV
decision, which can be seen from the burst of energy, which is sup-
posed to be removed, at the beginning of the voice segment. This,
again, results from insufficient model complexity.

4.3. Signal Processing Analyses on the Linear MA Filter

For the linear MA filter, signal processing analyses can bring some
interesting perspectives.

The impulse response is simply the weights connecting the input
and output layer, constant excluded. Figure 3(a) shows the impulse
response of the filter. It is reasonable that the impulse response con-
centrate around 0, but it is quite surprising that there is larger anti-
causal component, the impulse response before 0, than causal com-
ponent. A tentative explanation for this is that the nonlinearity may
be better approximated by introducing group delay, which changes
the causality of the system. This hypothesis can be partly verified
from the observation that the nonlinear filters are less anti-causal.
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Fig. 2. Output of nonlinear filter versus EGG in two consecutive
voiced segments.

The magnitude of the transfer function is plotted in figure 3(b).
One immediate observation is that the filter is essentially a low-pass
filter, which is reasonable because EGG signal is essentially a low-
passy signal. It is also interesting to observe that there is some vague
formant structures in the transfer function, which is probably the
result of averaging of the formant structures of the few phones in the
training utterance.
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Fig. 3. Signal processing analysis on linear MA filter.

4.4. The Use of Nonlinearity

Figure 4 plots the hidden output z;’s and hidden intermediate output
a:’s of all hidden nodes across time of the nonlinear ARMA filter,
in which we can have a very straightforward idea of how linearities
of the hidden nodes are applied. Notice that the three hidden outputs



are of similar shape, but there is a large distinction in DC offsets.
The intermediate output of the upper signal exceedes 1 and that of
the lower one exceeds -1. Both signals are curbed by the hyperbolic
tangent function. The effect of nonlinearity is less significant for the
signal in the middle.

Further, notice that the weights connecting the upper, middle
and lower hidden outputs to the output layer are -2.0153, 2.1788 and
-3.1902 respectively. Therefore, we can view the middle signal as
the “main signal”, and the other two as the “modification signals”
to be subtracted. The modification signals are offset to where con-
vexity/concavity of the sigmoid function is obvious, which in turn
introduces nonlinear adjustment to the main signal. This is an inter-
esting way of utilizing the nonlinear sigmoid functions.
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Fig. 4. Demonstration of how the neural network utilizes nonlinear-
ity. Each sequence is the time domain signal of a single node.

4.5. The Poles of the Nonlinear ARMA Filter

Finally, let’s take a look at the poles of the system. Although the
interpretation of poles is less straightforward for nonlinear filters, it
does have interesting meaning in our case, because, according to sec-
tion 4.4, the main signal is less distorted by the hyperbolic tangent,
which is a good approximation to a linear filter.

Figure 5 shows the poles of the feedback loop connecting to the
three hidden nodes. The distribution of the poles displays amazing
patterns. First, all poles strictly lie within the unit circle, which fur-
ther ensures stability. Second, the poles corresponding to the two
modification hidden nodes have similar angles, and their norms have
strict orders. As analyzed previously, these poles may correspond to
the zeros of the vocal tract system, and the highly uniform angles of
these pole may indicate the general distribution of spectral zeros.
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Fig. 5. Poles of the nonlinear ARMA filter. Each color denotes a set
of poles corresponding to a single hidden node.

5. CONCLUSIONS AND FUTURE WORKS

In this project, I proposed a TDRNN, or a nonlinear ARMA filter,
that turns input speech waveforms to approximation of EGG, which
can be further applied to pitch tracking and GCI location. Two base-
line systems, a linear MA filter and a nonlinear MA filter, are also
experimented and evaluated. Preliminary results show that the pro-
posed neural network is able to learn this nonlinear mapping better
than the baseline systems, although the generalized advantage is not
significant and UV decision is poor. Further analyses show that the
proposed system has an interesting way of utilizing the nonlinearities
of the hidden layer, and AR component learns an amazing pattern
that might correspond to the zeros of the vocal tract system.

One of the biggest drawback regarding the current architecture is
that the number of layers/hidden nodes is too small, and thereby the
training set is too small, to learn the general nonlinear mapping, and
to perform UV decision. Therefore, it will be useful to implement
more efficient learning algorithms to train a more complex architec-
ture efficiently. The second future direction is to use the estimated
EGG to perform pitch tracking and GCI location and compare it to
the current state-of-the-art. The potential advantage of this algorithm
is that the training set contains richer information than simply pitch
and GCI labels, which is often used in other supervised algorithm-
s. It is interesting to investigate how this additional information can
help.
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