
Second Order Descent Methods
for Estimating Branch Lengths

in Phylogenetic Trees
Zach Stephens

Coordinated Science Laboratory
University of Illinois at Urbana-Champaign

zstephe2@illinois.edu

I. INTRODUCTION

The goal of statistical phylogenetics is to find the most
probable relationship among a group of species (taxa) given
their aligned DNA sequence data. Evolutionary relationships
are described using phylogenetic trees, a bifurcating tree
structure that encapsulates the hierarchal ancestry of a
collection of organisms.

Figure 1. Example Phylogenetic Tree

A topology τ consists of the tree’s structure and the
distance between each node. The length of each branch
in the tree ({t1, . . . , t6} in figure 1) is proportional to the
genetic distance between a species and its ancestor. Larger
distances imply more genetic dissimilarity (more nucleotide
mutations) between the two sequences. Branch lengths can
be any non-negative real number.

Finding an optimal topology is a computationally daunting
task. The number of possible structures explodes as a factorial
function of the number of taxa in the tree, thus it has become
popular to approach the problem using heuristics and Monte-
Carlo methods [1]. Sampling algorithms have been developed
to traverse the space of possible tree structures [2], but in
order to assess the likelihood of each candidate structure it

is necessary to find the branch lengths that maximize the
likelihood given that particular structure. This report explores
this optimization sub-problem, that is, estimating the optimal
branch lengths given aligned DNA sequence data and a fixed
tree structure.

This work expands upon previously explored gradient
descent methods (See ECE551 final project) which suffered
from slow convergence and inefficient (also numerically
unstable) gradient computations. This work seeks to address
convergence issues by incorporating second order information,
as well as a more stable and efficient derivative formulation.

The following sections of this report include an explicit
formulation of the problem, additional background
information, algorithm implementation details, and
expressions for gradient / hessian elements. The algorithm
is run on simulated and real-world datasets and results are
discussed.

II. BACKGROUND / PROBLEM FORMULATION

For DNA sequence data each species is represented by a
string of the characters A, C, G, T, standing for the nucleotides
Adenine, Guanine, Cytosine, and Thymine, respectively. The
dataset is arranged into an observation matrix X where each
row designates a species, and each column is an observation
site x consisting of the nucleotide present at that point in the
string for each species.

Figure 2. Example Observation Matrix

Because this work assumes the tree structure is fixed,
let τ denote solely the collection of branch lengths:

{ti, . . . , t2(T−1)}. So our goal is to find:

τMLE = argmaxP (X | τ)
= argmax logP (X | τ)

P (X | τ) is also called the Phylogenetic Likelihood
Function, or PLF. Assuming independence among sites we
can write the log-likelihood as the summation:

logP (X | τ) =
∑
x∈X

logP (x | τ)

The likelihoods P (x | τ) can be computed in the same
fashion as a bayesian network with the same structure, that
is, each node in the tree is conditionally independent given
its ancestor. The joint distribution of the sequence data and
the inner nodes is given as:

P (x, nodes | τ) =
∏

nodes
P (nodei | parent(nodei), ti)

For example, consider the simple two-species tree:

Figure 3. Two-Species Tree

Which has joint the distribution:

P (x, nroot, | τ) =

P (nroot) · P (x1 | nroot, t1) · P (x2 | nroot, t2)

We can arrive at the desired P (x | τ) by marginalizing
over the inner nodes, in this example just nroot:

P (x | τ) =
∑

nroot∈{A,C,G,T}
P (x, nroot | τ)

We now have the likelihood in terms of things we can
compute. P (nroot = a) = P (a) is the prior probability
of seeing nucleotide a in the dataset and can be estimated
directly from the data. P (ni = a | nj = b, ti) is the
probability of nucleotide b mutating into nucleotide a over
time ti. This term is evaluated by specifying a Markov
model of nucleotide substitution. In this work the simple
Jukes-Cantor ’69 [3] model is chosen, this model assumes
nucleotides mutate into each other with an equal rate:

Each element Qij of the matrix describes the rate that
nucleotide i mutates into j. So therefor:

P (ni = a | nj = b, ti) = eQti ba = P (ti)ba

P (ti) is called the transition probability matrix. Using this
matrix we can rewrite P (x, τ) for our two-species example
in a vectorized form:

P (x | τ) = πT (P (t1)L1 ◦ P (t2)L2)

π =


P (A)
P (C)
P (G)
P (T)

Li =


P (ni = A | parent(ni), ti)
P (ni = C | parent(ni), ti)
P (ni = G | parent(ni), ti)
P (ni = T | parent(ni), ti)


Where ◦ denotes the Hadamard product. The vectors Li

are called partial likelihood vectors.

This leads us to Felsenstein’s celebrated dynamic
programming algorithm [4] [5] that allows us to compute
P (x | τ) for an arbitrary tree structure by traversing the tree
in post-order (from leaves to root), and recursively computing:

Li = P (tc1)Lc1 ◦ P (tc2)Lc2

Where c1 and c2 denote the children of node i. The partial
likelihood vectors for leaf nodes are determined directly by
the sequence data, for example if nodei is a leaf node:

Once the algorithm traverses all the way to the root, the
likelihood P (x | τ) can be computed:

P (x | τ) = πTLroot

logP (X | τ) =
∑
x∈X

log(πTLroot)

Now that we have an explicit formulation for the log-PLF
we can obtain expressions for gradient and hessian elements
for use in an iterative descent algorithm.

III. ALGORITHM

In general there is no closed-form expression for τMLE ,
so common approaches include iterative methods such
as gradient descent, Newton’s method, and expectation
maximization [6] [7]. This work explores Newton’s method
approaches, that is:

τ ← τ + ηH−1∇τ log PLF(X, τ)

To use this update equation we first need to procure
expressions for the gradient elements d log PLF

dti
and the hessian

elements d2 log PLF
dt2

i

, d2 log PLF
dtitj

. Furthermore, to impose the
non-negativity constraint we clip any negative assignment:

ti ← max(0, ti + ηH−1 d
dti

log PLF(X, τ))

A. Analytic Expression for Gradient and Hessian

By inspection it is easy to see that the only component of
the PLF that depends on ti is its transition probability matrix
P (ti) = eQti , which has derivatives P ′(ti) = QeQti and
P ′′(ti) = Q2eQti . Returning to our two-species example:

P (x | τ) = πT (P (t1)L1 ◦ P (t2)L2)

We see that the derivative with respect to t1 is simply:

d
dt1
P (x | τ) = πT (P ′(t1)L1 ◦ P (t2)L2)

We see that the derivative of the PLF with respect to
a particular branch length is just the PLF function called
with a slightly different topology. Let τ̃i denote a topology
τ where P̃ (ti) ← P ′(ti). Similarly let τ̃ii denote τ with
P̃ (ti) ← P ′′(ti), and τ̃ij denote τ with P̃ (ti) ← P ′(ti) and
P̃ (tj)← P ′(tj). The forms of the derivatives in general are:

d
dti
P (x | τ) = P (x | τ̃i)

d2

dt2
i

P (x | τ) = P (x | τ̃ii)

d2

dtitj
P (x | τ) = P (x | τ̃ij)

But what we are really looking for are the derivatives of
the log-PLF, so by applying some basic calculus:

d
dti

logP (x | τ) = P (x | τ̃i)
P (x | τ)

d2

dt2
i

logP (x | τ) = P (x | τ̃ii)P (x | τ)− P (x | τ̃i)2

P (x | τ)2

d2

dtitj
logP (x | τ) = P (x | τ̃ij)P (x | τ)− P (x | τ̃i)P (x | τ̃j)

P (x | τ)2

B. Finite Difference Approximation

Even though the analytic expression for the gradient is
fairly cheap to compute, finite-difference methods were also
explored. The central difference approximations were used:

Let f(x, τ) = logP (x | τ)

d
dti
f(x, τ) ≈

f(x, τ̃i+)− f(x, τ̃i−)
h

d2

dt2
i

f(x, τ) ≈
f(x, τ̃i+)− 2f(x, τ) + f(x, τ̃i−)

h2

d2

dtitj
f(x, τ) ≈

f(x, τ̃i+j+)− f(x, τ̃i+j−)− f(x, τ̃i−j+) + f(x, τ̃i−j−)

h2

Where τ̃i+ denotes topology τ with P̃ (ti) ← P (ti +
h
2),

and τ̃i− denotes τ with P̃ (ti)← P (ti− h
2). It has been found

that the hessian estimates are inaccurate when the branch
values approach zero [8], so for this work the finite difference
approximation is only used as an alternative way to compute
the gradient.

C. Levenberg-Marquardt Approximation for the Hessian

The Levenberg-Marquardt approximation was included in
these experiments as a computationally efficient estimate of
the hessian matrix:

gn = ∇τ logP (x | τ) H ≈
N∑
n=1

gn(gn)
T

The inverse to this matrix can be found efficiently via the
matrix inversion lemma:

H−10 = αI

H−1i = (Hi−1)
−1 +

(H−1i−1gi)(H
−1
i−1gi)

T

1 + (H−1i−1gi)
T gi

D. Computational Complexity

Below is a brief comparison of the computational
complexity of each approach, where T is the number of taxa,
and N is the number of sites (length of DNA sequences).
Each invocation of P (x | τ) is O(T).

Gradient Computation:
• Analytic: 2N(T − 1) PLF invocations.
• Finite-Difference: 4N(T − 1) PLF invocations

Hessian Computation:
• Analytic: 3N(T−1)2 PLF invocations + O(T 3) inversion
• L-M Approx: 3N matrix-vector multiplies (O(T 2))

IV. EXPERIMENTAL RESULTS

The descent algorithm was run on synthetic and real
datasets to compare the effects of incorporating analytic
and estimated second-order information. The synthetic data
was created by randomly constructing a reference sequence
of a desired length (each nucleotide chosen with equal
probability), then randomly mutating bases with a specified
probability for each synthetic species. Thus we would expect
the most probable tree topology to be one that reflects each
species sharing a common ancestor. In these first experiments
such a dataset was constructed with T = 4, N = 2000.

Figure 4 shows a comparison of first order and second
order descent approaches given the same initialization.
Figures 5 shows the initialized topology, and Figure 6 shows
the final topology reached by the top-performing method
(finite-difference gradient descent).

Figure 4. Log-Likelihood (LL) vs. iteration comparison.

Figure 5. Randomly initialized tree. LL: −9122

Figure 6. Final tree. LL: −8470

To further compare various attributes of each method
every combination of gradient and hessian computations was
performed on the same initialization of another synthetic
dataset (T = 20, N = 1000, LL0 = −23966). Figure 9
shows the iteration count, computation time, and final log-
likelihood for each method after it was run to convergence.
The algorithm was halted after the change in log-likelihood
between iterations fell below a threshold (0.01). To prevent
”overstepping” into poor regions of the parameter space
the step size was recursively halved if the log-likelihood is
decreased after an iteration.

Figure 7. Comparison of gradient / hessian methods

As expected the methods that incorporated the hessian
converged in an order of magnitude fewer iterations, though
with a significant additional computational cost per iteration
The usage of analytic gradients and hessian led to the
fastest convergence, but surprisingly methods that used
approximations ended up converging to a better optima.

In addition to simulated data the algorithms were run on
a real dataset consisting of shrub DNA from the Pinaceae
family. For this dataset T = 20, N = 2838. Each combination
of gradient / hessian computations was run as above, and
the method that resulted in the highest final log-likelihood
was chosen. Surprisingly it was again the finite-difference
gradient that outperformed the others.

Figure 5. Randomly initialized tree: Pinaceae dataset.
LL: −24146

Figure 6. Final tree: Pinaceae dataset. LL: −17461

The resulting tree elucidates the relationships between the
species more clearly than the synthetic datasets. There are
more obvious hierarchal groupings, most notably between
the two clusters of species separated by the root. The
significant increase in likelihood is reassuring that the descent
algorithm is exploring a decent portion of the parameter space.

V. CONCLUSIONS

This report investigated the application of second order
descent methods for estimating the optimal branch lengths
in a phylogenetic tree. Expressions for the derivatives of the
log-PLF were presented and used in an iterative algorithm
that was successfully run on synthetic and real-world data.

It came as no surprise that the incorporation of the hessian
into the standard gradient descent update equation led to
an order of magnitude faster convergence at the expense of
additional computation time. A compromise was found by
using the Levenberg-Marquardt approximation of the hessian,
resulting in fast convergence with low computational cost. It
is very interesting however, that by using the finite-difference
approximation for the gradient the algorithm often ended up
at a better local optima when compared to using the analytic
expressions. One possible explanation is that by heading
”not exactly” in the direction of the gradient we might be
more likely to deviate from the closest local maxima and
more thoroughly explore the parameter-space, eventually
converging on an even better optima.

REFERENCES

[1] Huelsenbeck, J. P. and F. Ronquist. MRBAYES: Bayesian inference of
phylogeny. Bioinformatics 17:754-755. 2001.

[2] Larget, B. and Simon, D. Markov Chain Monte Carlo Algorithms for the
Bayesian Analysis of Phylogenetic Trees. 16 (6). pp. 750-9. 1999.

[3] T. Jukes and C. Cantor, Evolution of Protein Molecules. New York:
Academic Press. 21-132, 1969.

[4] J. Felsenstein, Phylogenies and the comparative method. American Nat-
uralist 125: 1-15, 1985.

[5] J. Felsenstein, Evolutionary trees from DNA sequences: a maximum
likelihood approach. Journal of Molecular Evolution 17: 368-376, 1981.

[6] I. Mayrose et al., Best branch lengths using expectation maximization.
2005.

[7] A. Siepel. Expectation maximization for combined phylogenetic and
hidden markov models. 2002.

[8] M. Reis, Z. Yang Approximate Likelihood Calculation on a Phylogeny
for Bayesian Estimation of Divergence Times.
Mol. Biol. Evol. 28(7): 2161-2172, 2011.

