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1 Introduction

Nonnegative Matrix Factorization (NMF) [1, 2] has been widely used in audio research, e.g. auto-
matic music transcription [3], musical source separation [4], and speech enhancement [5]. The key
strategy for applying NMF to audio-related tasks is to find a lower rank representation of the Short
Time Fourier Transformed (STFT) input signal and use the basis vectors as dictionaries. For exam-
ple, in the single channel source separation, we assume that the dictionaries learned from different
training sets of target sources are distinct so that their activations for reconstructing a mixture signal
will have discriminant patterns per a source.

Although NMF provides an intuitive additive structure, i.e. weighted sum of basis vectors approx-
imates the STFT matrix, that is suitable for audio analysis, its linear decomposition model can be
limited in some sense, e.g. we do not learn a hierarchy of features from NMF. In this project I would
like to elaborate the standard NMF model to have a deeper structure. At the same time, the unique
additive reconstruction manner of NMF due to the nonnegativity constraint can be incorporated into
the learning so that the features can have more parts-based representation.

To this end, I tried two different approaches: NMF with block sparsity and multi-layered auto-
encoders. Although I got some source separation results that are comparable to the ones from
the ordinary NMF with the newly derived nonnegative auto-encoders, there was no performance
improvement for now. Therefore I would focus on the former approach in this report while setting
aside the deep learning-based approach as an appendix with discussions on the future plan about it.

The proposed Block NMF (BNMF) is one of the recent attempts to preserve manifold of the audio
signals that belong to a same source. In [6] an overcomplete dictionary model was proposed that
fully makes use of the entire training samples (spectra) during the separation. Its behavior that
respects manifold of the training data is because of the fact that it skips the NMF learning phase,
which usually replace the training samples with convex cones (or hulls in the probabilistic versions).
The convex cone representation is sometimes more useful than the original data as the cone can
be defined a few basis vectors while it introduces unnecessary areas where no training data reside.
Therefore, by skipping this step and learning sparse encoding of the entire training spectra as if
they are the basis vectors, we can get the reconstructions of a source that apt to lie on the original
manifold. However, it is burdensome to carry on the entire training data set for the source separation
tasks that sometimes have to be done fast.

Another approach is to learn some important samples from the training data that preferably lie on the
manifold instead of wrapping the data convexly[7]. If we apply the same sparse encoding aforemen-
tioned, or interpolate in-between those samples, we can effectively approximate the manifold of the
data set with smaller number of data. Although this provides desired properties, it cannot efficiently
represent unseen data points that are slightly off the interpolation line or the representative samples.
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In this project I propose a new structured NMF where we can group the basis vectors into the ones
that represent only local subset of data. A given data point is then reconstructed by using only one
(or very small number) of group of bases using sample-wise block sparsity. On top of that I also add
another regularization term that enforce each group as similar as possible.

After providing some introduction to existing methods, such as standard NMF in section 2.1, sparse
encoding of overcomplete dictionary in section 2.2, and the manifold preserving quantization and
interpolation in section 2.3, the theoretical background and derivation of the proposed method with
toy examples are given in section 3. Section 4 is for crosstalk cancellation results. Appendix is for
the deep learning part of the project that was set aside for further study.

2 Dictionary-based source separation using NMF

2.1 NMF with β-divergence [5]1

NMF takes a nonnegative matrix V ∈ RM×N+ as input and tries to approximate it with a pair of factor
matrices W ∈ RM×R+ and H ∈ RR×N+ , where the set R+ stands for nonnegative real numbers, and
R is for the number of latent components [1, 2]. A generalized way to measure the approximation
error between the input V and the reconstruction WH =

∑R
z=1 wzhz can be the β-divergence,

which is defined by

Dβ(x|y) =


xβ+(β−1)yβ−βxyβ−1

β(β−1) β ∈ R\{0, 1}
x(log x− log y) + (y − x) β = 1
x
y − log x

y − 1 β = 0

(1)

for any pair of elements x and y in the input and the reconstruction, respectively. Note that (1) re-
duces to Frobenius norm, unnormalized Kullback-Leibler divergence, and Itakura-Saito divergence
[8] when β equals to 2, 1, and 0, respectively. Therefore, the objective function of NMF can be
defined as follows:

Jβ = Dβ
(
V
∣∣∣WH

)
. (2)

Using the fact that the derivative of the Dβ(x|y) with respect to y is

∂Dβ(x|y)

∂y
= yβ−2(y − x), (3)

we can calculate the derivatives of the objective function (2) as follows:

∂Jβ
∂W

=
{

(WH)(β−2) � (WH − V )
}
H>,

∂Jβ
∂H

= W>
{

(WH)(β−2) � (WH − V )
}
, (4)

where � is for Hadamard products and exponentiations are carried in the element-wise manner as
well.

We can derive the multiplicative update rules of NMF by selecting the step size of the gradient
descent method in such a way that it turns the update into a multiplicative form. An alternative view
of this process is to simply choose the negative and positive terms of the derivative as the numerator
and the denominator, respectively, which in turn produces following update rules:

W ←W �

{
(WH)(β−2) � V

}
H>

(WH)(β−1)H>
,

H ← H �
W>

{
(WH)(β−2) � V

}
W>(WH)(β−1)

. (5)

In the two sources case we learn basis vectors from clean training signals of the two sources sepa-
rately. Suppose that they are W s ∈ RM×R

s

+ and Wn ∈ RM×R
n

+ , respectively. As for the unseen

1This clause is copied from the cited paper.
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mixture STFT matrixX = Ss+Sn, we run another NMF, but with fixed basesW = [W s,Wn] this
time. Therefore, encoding matrix H we get by using (5), but skipping the update for W , consists of
two source groups, H = [Hs;Hn], where ; stands for vertical matrix concatenation.

Now the separation is based on the grouped activation and bases. For the source Ss, for example, it
can be recovered by using simple Wiener filter-like soft masking:

Ŝs =
W sHs

WH
�X

 

 
Source A
Source B
Mixture
Convex Hull A
Convex Hull B
Estimate for A
Estimate for B
Approximation of Mixture

(a)
 

 
Source A
Source B
Mixture
Convex Hull A
Convex Hull B
Estimate for A
Estimate for B
Approximation of Mixture

(b)

Figure 1: [7] Separation examples using (a) a plain topic model (b) sparse encoding

2.2 Sparse encoding of overcomplete dictionaries

Figure 1 (a) shows the separation results of Probabilistic Latent Semantic Indexing (PLSI) [9] that
is equivalent to NMF with KL-divergence. After learning the red and blue convex hulls, it is usual
to discard the training samples. Now the only way to decide whether the unseen data point belongs
to source A or B is to see if either of the convex hull includes it. First, this is problematic since the
hulls can overlap, so the filled red triangle can belong both sources. On top of that, if the unseen
point is a mixture of the two unseen samples from the two sources, the infinite number of source
reconstructions that can lie inside the hulls can be the solutions whether or not they are on the
manifold.

Figure 1 (b) is the sparse encoding of the overcomplete dictionaries. Now that we do not learn the
hulls, but find a few active training samples, they can also reconstruct the mixture well and preserve
the manifold at the same time.

To achieve this manifold preserving decomposition, elements in the overcomplete dictionary are
sparsely encoded only small number of them are activated. The procedure is not so different from
introducing sparsity over each column vector of H matrix except the fact that the method in [6] is
based on PLSI.

Even if this method provides a way to respect the manifold of the training data, it is not very efficient
to keep the entire training samples.

2.3 Manifold preserving quantization and interpolation

Figure 2 shows an alternative way to preserve the manifold. Instead of using the entire training
samples or learning convex hulls. Figure 2 (a) is the case where the four clusters are not balanced
(pink numbers are the number of samples in each cluster). The goal of this quantization is to learn
four samples each of which represents a cluster. Black diamonds are four samples from 20 repeated
experiments. In (b) we can also see that the five samples are efficiently represent five important areas
of the manifold (once again, sampling was done 20 times).
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Figure 2: Learning manifold preserving samples from (a) four unbalanced clusters (b) epsilon
shaped unbalanced dataset [7]

This manifold preserving quantization provides a multimodal structure that can theoretically deal
with any nonlinear structure of the data. However, combined with interpolation, its expressive power
is limited to the skeleton of the data manifold. What we actually want is a convex hull-based struc-
ture that is more flexible to the variance of unseen data, but also free from unwanted areas inside the
hull.
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Figure 3: Learning manifold preserving local convex hulls from (a) four clusters (b) epsilon shaped
unbalanced dataset. Diamonds with same colors are supposed to represent the same local structure
(cluster).

3 Block NMF for manifold preserving hierarchical bases groups

The proposed method is a modified version of NMF to achieve locality preserving convex hulls.
The basic concept that the method also tries to respect the local structure of the data is similar to
the aforementioned manifold learning techniques, but now we can learn a few small convex hulls
that correspond to clusters. I introduce the convex hull representation back, because it can construct
small convex hulls for each underlying modality of data.
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Figure 4: A block diagram for the full source separation procedure including source specific dictio-
nary learning and its (block) sparse coding with the learned dictionaries.

Figure 3 presents some basis vectors that are learned from the proposed method. In (a) three bases
(same colored diamonds) are allocated per a cluster. Because only one of the four sets are activated
at a time, the original data points are exclusively approximated by those three-bases sets, not a big
convex hull for all four clusters. In order for the bases within a set to be as close as possible to each
other, I use K-means as the a prior for the bases. We can see the same effect of the proposed method
in (b) as well. If we draw convex hulls each of which is defined by the same colored diamonds, we
can see that those local convex hulls work as boundaries of the local subset of the data.

Figure 4 describes the source separation procedure using the proposed technique. For the separation
task, we first have to learn basis vectors from each source (orange and green) that requires two
distinct NMF runs in this example. The basis vectors for a source are grouped into the free defined
number of sets, e.g. five bases per a group of five sets, and the H matrix is block-wise sparse. After
learning those bases, we use them as a fixed dictionary for describing unseen mixtures while keeping
the newly learned H matrix to be sparse as well.

The objective function of BNMF consists of three terms: the original reconstruction error, a penalty
function for the block sparsity, and a prior for the bases concentration:

J = D(V |WH) + λ
∑
t,g

Ω(H
(g)
t ) + η

∑
g

D(W (g)|µ(g)). (6)

The first term is the β-divergence in (1) from the original NMF algorithm. The function Ω on blocks
g of each frame t is to give penalty to the solutions that are not sparse. For example, for a two
dimensional variable, we can use a function that looks like Figure 5.

In particular, I used log /l1 penalty,

Ω(H) =
∑
t,g

log(ε+ ||H(g)
t ||1)

that was used in [10, 11], for its monotonicity and induced multiplicative updates.

The main difference between the universal speech model [11] and the proposed block NMF is that
the former sets block sparsity on speakers. In other words, it selects relevant speech models in a
global fashion, so the chosen one is always active while the proposed method selects the blocks
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Figure 5: The penalty function used for the block sparsity. This function favors (has lower values)
when one of the dimension is close to zero.

dynamically. Furthermore, the proposed model is not limited to correspond each bases group to a
certain speaker.

For the data-driven way of learning those blocks, in the third term we can start from estimated clus-
ters. For instance, we can make use of those manifold preserving samples [7] or simply Gaussian-
based clustering. In this project, I used K-means algorithm to initialize those blocks. It provides a
prior information about the basis vectors of a certain block that works like a Dirichlet prior in the
simplex models, such as PLSI (red dots in Figure 3). For a given block g, the distance between bases
vectors in the group and the corresponding mean µ(g) is also minimized as an additional regulariza-
tion.

We can derive multiplicative update rules for this new objective function as in the standard NMF
case and the universal speech model, but on each frame of H as follows:

W (g) ←W (g) �

{
(WH)(β−2) � V

}
H(g)> + µ(g)

(WH)(β−1)H(g)>
,

H ← H �
W>

{
(WH)(β−2) � V

}
W>(WH)(β−1)

H
(g)
t ← H

(g)
t � 1

1 + λ/(ε+ ||H(g)
t ||1)

(7)

4 Experimental Results: Cross Talk Cancellation

For the experiment, I used two speakers from TIMIT corpus for training and testing. Nine sentences
per a source speaker are transformed into magnitude STFT spectrograms and set aside to learn the
block bases. Then, I picked up a sentence from each speaker and then mixed with 0dB SNR (the
sound level of the two test signals are same).

An objective measurement that can assess the quality of the separated signals is proposed in [12].
From this, we can define three measures: Signal-to-Interference Ratio (SIR), Signal-to-Artifact Ra-
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tion (SAR), and Signal-to-Distortion Ration (SDR). We want to get as high SIR as possible to max-
imize separation, but it can introduce artifacts that decrease SAR. SDR is an overall score.
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Figure 6: SDR, SIR, and SAR values from different choices of the number of bases and algorithms
Red diamonds (SIR), crosses (SAR), and dots (SDR) are from the proposed method.

We can see in Figure 6 that the proposed method with enough number of bases (3, 6, and 10 bases
per a cluster and ten clusters total) gave improved SIR by around 3dB. I believe that the improvement
is because of the assumption that the proposed method can better preserve the data manifold as a
combination of multiple sub-convex-hulls.

5 Conclusion and Future Works

In this project, I developed a manifold preserving NMF model where the components are grouped
into several blocks that locally represents exclusive subsets of data. In this way we could get better-
performing dictionaries of speech sources that could be used to produce improved source separation
results.

Nothing stops it from evolving into deeper hierarchical model that further decomposes each block
into subgroups on and on. On top of that, the initialization procedure with K-means clustering
can be replaced with more sophisticated techniques. Comparisons to existing manifold preserving
techniques should be performed as well.

Appendix: An Auto-encoder for NMF

Figure 7 depicts an auto-encoder that corresponds to NMF. This is not very different from a usual
auto-encoder unless we further assume nonnegativity constraints for the parameters, W and H .
Furthermore, the error between input and output can be defined by the β-divergenceDβ(x|y) instead

· · ·

h1 h2 hR· · ·

· · ·

y1 y2 yM

W12
W11

W1M

W21

W22

W2M

WR1

WR2

WRM

W

W>

x2 xMx1

Figure 7: Auto-encoder for NMF.
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Figure 8: Auto-encoder for deep NMF.

of the mean squared error. The auto-encoder can be further extended to a multilayer network to make
the best use of the deep structure as in Figure 8.

The relationships between nodes in adjacent layers are defined as follows:

z(l) = g(h(l))

h(l+1) = w(l)z(l),

for some pre-defined nonlinearity g(·). Because the error between input and the output layer is the
objective function of the stacked auto-encoders, and we can define the error in terms of β-divergence,
the derived back-propagation algorithm is defined

∂J
∂W (L)

=
∂J
∂h(L)

∂h(L)

∂W (L−1) =
∂D(Y |X)

∂W (L−1)

δ(L) =
∂J
∂z(L)

=
∂D(Y |X)

∂z(L)

δ(l) =
∂J
∂z(l)

= W (l)>δ(l+1)g′(h(n+1))

∂J
∂W (l)

=
∂J

∂h(l+1)

∂h(l+1)

∂W (l)
=

∂J
∂h(l+1)

z(l)
>

∂J
∂h(l)

= δ(l)g′(h(n)).

We can see that the δ(l) at a given layer is a multiplication of current weights, previous δ(l+1), and
differentiation of the nonlinearity. However, the nonlinearity factor goes away in the multiplicative
update rules.

I would like to study this model further, as for now it gives no better results than plain NMF case.
One possible reason is that the training data that I used was not enough (around 1,000 frames) to
train a network with hundreds of weights. It is also not clear yet how the multiplicative update rules
in this network work instead of gradient descent with nonlinearity that enforces nonnegativity.
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