
Data Quantization Optimized for Machine Learning
Applications

Igor Fedorov
Department of Electrical and Computer Engineering

University of Illinois at Urbana-Champaign
Email: fedorov1@illinois.edu

I. INTRODUCTION

The goal of machine learning applications is to find a classi-
fication function, y(x), for a test point x ∈ χ, given a training
dataset {(x (n), t (n)), 1 ≤ n ≤ N} in order to minimize some
optimality criterion. In practice, the collection of data and
feature extraction may not occur at the same time or in the
same place as the application of the classification function.
For instance, the user may want to store the collected data and
perform classification later. If classification is computationally
intensive, it may not be feasible to compute the classification
function on the same device that was used to collect the data,
so transmission of the collected data is required. In order to
store or transmit data prior to classification, the data must
first be quantized and then compressed. In this report, I will
focus solely on the quantization process. I will assume that a
classification function has been trained using unquantized data,
but the testing data is quantized prior to being passed through
the classifier. In other words, we test the classifier with some
x̂ = q(x). As such, we seek to design a quantizer, q : χ→ χ,
which preserves the performance of the classifier y. In this
report, I will study several different methods of designing the
quantizing function q using clustering.

Fig. 1. Typical machine learning scenario

The approaches proposed in the following sections are
all data clustering algorithms. Clustering and quantization
share many fundamental characteristics. Both clustering and
quantization define a mapping q : χ → χ; both seek a
codebook B = R(q) (where R(·) is the range operator)
which is, in some sense, optimal; both seek a partitioning
of the input space into regions {Rk, 1 ≤ k ≤ C} such that
χ = R1∪R2∪· · ·∪RC , where C, the number of clusters, can
be allowed to grow to infinity in the case of data quantization.
The main difference between data quantization, in the most
general sense, and clustering is that clustering requires C to
be finite and specified a priori.

II. MINIMIZATION OF EMPIRICAL INFORMATION LOSS
WITHOUT POSTERIOR PDF ESTIMATION FOR TEST DATA

In [1], a general framework for performing feature quanti-
zation is presented. Let X be the original dataset of features,
Y the set of labels, and K the quantized version of X . One
way to measure the quality of the quantized dataset K is by
measuring the information loss

L1 = I(X;Y)− I(K;Y) (1)

incurred from trying to estimate Y using K instead of X . The
mutual information I(X;Y) is defined as:

I(X;Y) = EX [D(PX , P)] (2)

where P is marginal distribution of Y: Y ∼ P . Since we do not
have access to the marginal probability density of X , we can
replace the expectation in (2) with an average over our dataset
and compute the empirical mutual information, Î(X;Y), as:

Î(X;Y) =
1

N

N∑
i=1

D(P̂Xi ||P̂) (3)

where N is the number of data points, P̂Xi
= P̂ (Y |X = Xi)

is the empirical posterior probability of Y given X = Xi, P̂
is the empirical marginal distribution of Y , and D(·||·) is the
Kullback-Leibler Divergence. Many of the design choices in
using this algorithm come from how the empirical distributions
are calculated.

The quantizer, K(Xi), can now be defined as:

K(Xi) =

{
k if Xi ∈ Rk
0 else

(4)

The mutual information I(K;Y) is given by:

I(K;Y) =

C∑
k=1

pK(k)D(PY |K=k||P) (5)

where pK is the marginal distribution of the codebook and C
is the number of clusters. Once again, we do not have access to
the true data generating distributions, so we can only estimate
I(K,Y) with Î(K;Y):

Î(K;Y) =

C∑
k=1

p̂K(k)D(P̂Y |K=k, P̂) (6)

Now, we set p̂K(k) to the fraction of observations which fall
into Rk: p̂K(k) = |Rk|

N . P̂Y |K=k is then set to the average of
the posterior distributions of the observations which fall into
Rk:

P̂Y |K=k =
1

|Rk|
∑

Xi∈Rk

P̂Xi (7)

= πk (8)

So, we see that each region, Rk, is represented by a distribu-
tion πk.

We now try to minimize the empirical loss of information:

L2 = Î(X;Y)− Î(K;Y) (9)

which reduces to:

L2 =
1

N

C∑
k=1

∑
Xi∈Rk

D(P̂Xi ||πk) (10)

Minimization of L2 is a two-fold procedure, similar to the k-
means algorithm. We find a new partitioning to minimize L2,
then we find the new πk, and repeat the entire process until
the solution converges.

Given a new partitioning {Rk}Ck=1, we must find:

g = arg min
π

∑
Xi∈Rk

D(P̂Xi
||π) (11)

The solution that g = πk is the unique minimizer of (11) is
stated as an obvious fact in [1], but I will give a short proof
here. We know that D(p1||p2) is convex in the pair (p1, p2)
[7]. Now, let’s expand the quantity we are trying to minimize
in (11):∑
Xi∈Rk

D(P̂Xi
||π) = D(P̂Xi1

||π) + · · ·+D(P̂XiNk
||π) (12)

Nk = |Rk| (13)

{im}Nk
m=1 = {i : Xi ∈ Rk} (14)

Since we are trying to find the minimizer of (12), we can scale
it by a constant without changing the solution:

g = arg min
π

1

|Rk|

(
D(P̂X1

||π) + · · ·+D(P̂X|Rk|
||π)
)

(15)

We now see that the quantity on the right in (15) is a convex
combination, meaning:

1

|Rk|

(
D(P̂X1 ||π) + · · ·+D(P̂X|Rk|

||π)
)

(16)

≥ D

(
1

|Rk|
∑

Xi∈Rk

P̂Xi

∣∣∣∣∣
∣∣∣∣∣ 1

|Rk|
∑

Xi∈Rk

π

)
(17)

= D

(
1

|Rk|
∑

Xi∈Rk

P̂Xi

∣∣∣∣∣
∣∣∣∣∣π
)

(18)

We can now use the information inequality [7], which states
that D(p1||p2) ≥ 0 with equality if and only if p1 = p2.
Therefore

1

|Rk|
∑

Xi∈Rk

D(P̂Xi ||π) ≥ 0 (19)

where equality is achieved for π = πk.

Now, given a set of {πk}, we can find the optimal parti-
tioning of the input space using:

Rk = {Xi : D(P̂Xi ||πk) ≤ D(P̂Xi ||πj), j 6= k} (20)

By iterating between finding the optimal {πk} and the optimal
{Rk}, we are guaranteed to find a local minimum of the
objection function (10). The proof of this follows along the
lines of the proof we gave for convergence of k-means. In
other words, for a given {Rk}, the procedure we have given
for calculating {πk} guarantees that (10) decreases (or stays
the same). For a given {πk}, re-assigning {Rk} as specified
here decreases (10) (or keeps it the same). Therefore, unless a
local minimum has already been found, this iterative procedure
is guaranteed to converge to a local minimum.

In the remainder of this section, I will consider several
different implementations of this algorithm and report exper-
imental results. Some of the main differences between the
methods presented stem from how the posterior probability
P̂Xi

is calculated and whether hard or soft clustering is desired.

A. Soft Clustering

The approach presented in [1] takes the view that a super-
vised clustering algorithm should not depend on having P̂Xi

for test data, since test data is unlabeled. As such, by assuming
that the input space is a compact subset, the assignment
criterion is modified to assign each Xi to the closest mk, where
distance is measured in the l2 sense and mk is the k’th centroid
corresponding to πk, as before. With this change, the resulting
quantizer does not require test data to be labeled, but solving
for the parameters of this quantizer remains a combinational
optimization problem. As a result, a soft partitioning of
the input space is introduced, where wk(Xi) represents the
confidence of assigning Xi to Rk, with the constraint that
‖w(Xi)‖1 = 1 where w(Xi) = [w1(Xi) · · ·wC(Xi)]

T . A
softmax-style form for the weights is adopted:

wk(x) =
e−β‖x−mk‖2/2∑C
j=1 e

−β‖x−mj‖2/2
(21)

where β controls how soft the clustering is. The resulting cost
function to be minimized is given by:

L3 =

N∑
i=1

C∑
k=1

wk(Xi)D(P̂Xi
||πk) (22)

The update rules are then given by the following:

m
(t+1)
k = m

(t)
k (23)

− α
N∑
i=1

C∑
j=1

wk(Xi)D(P̂Xi ||π
(t)
j)

∂w
(t)
j (Xi)

∂m
(t)
k

(24)

∂w
(t)
j (Xi)

∂m
(t)
k

= β
[
1{j=k}wk(x)− wk(x)wj(x)

]
(x−mk)

(25)

π
(t+1)
k (y) =

∑N
i=1 w

(t+1)
k (Xi)P (Xi)(y)∑

y′
∑N
i=1 w

(t+1)
k (Xi)P (Xi)(y′)

,∀y (26)

Given these update equations, the three remaining design
decisions are how α is chosen, how β is chosen, and how
P̂Xi

is calculated.
1) Selection of α Using Line Search: [1] suggests that

α should be found using a line search, but details are not
provided as to how the line search should be carried. I will
present the details of the algorithm I used here. The idea
behind a line search is to find the best α(t) such that

m
(t+1)
k = m

(t)
k − α

(t)d(t) (27)

minimizes L3(M (t+1),Π(t)) for a given search direction d(t),
where M (t+1) = {m(t+1)

k , 1 ≤ k ≤ C}, Π(t) = {πk, 1 ≤ k ≤
C}, and t is the iteration index. In effect, a line search is a
one dimensional unconstrained optimization problem with the
objective function given by [8]:

E(α) = L3(M (t+1)(α),Π(t)) (28)

where I have made explicit the dependence of L3 on α through
the dependence of m(t+1)

k on α. E(α) may not be globally
convex, but we do know that it has local minima. Therefore,
the first step is to find three points (a, b, c) satisfying a < b < c
such that E(a) > E(b) and E(c) > E(b), which is termed
bracketing. The algorithm I have implemented to establish a
bracket is a modification of the bracketing algorithm presented
in [9]. The algorithm is summarized in Alg. 1. The idea is
to randomly pick two points, a and b. Then, we establish a
third point c which satisfies E(c) < min(E(a), E(b). Then
we shift the points (a, b, c) until a local minimum of E(α)
falls in the range (a, b) or (b, c). One important edge case to
consider was if E(α) is flat. To circumvent the issue of flat
E(α), the bracketing algorithm is only allowed to run for a
certain number of iterations and if E(a) ≈ E(b) ≈ E(c), the
bracket is deemed to have only one element:

αflat = arg min
α∈{0,b}

E(α) (29)

Once the bracket has been established, a local minimum of
E(α) is found by iteratively shrinking the bracket. The shrink-
ing algorithm uses two types of bracket reduction algorithms.
The first is called the Golden section search [9]. The goal at
each iteration is to pick two new points, d and e, between a and
c. The new points are picked such that w = |d− a| = |c− e|,

Algorithm 1 Establishing bracket
Require: Loss function E(α), distance δ, maximum iteration

count maxiter.

1: a = rand(1)
2: b = a+ δ
3: if E(a) < E(b) then
4: c = a− δ
5: else
6: c = b+ δ
7: end if
8: while E(c) < min (E(a), E(b)) & iter < maxiter do
9: if E(a) < E(b) then

10: c = a− δ
11: else
12: c = b+ δ
13: end if
14: [a, b, c] = sort([a, b, c], ’ascend’)
15: end while
16: if E(a) ≈ E(b) ≈ E(c) then
17: if E(b) < E(0) then
18: return b
19: else
20: return 0
21: end if
22: end if
23: return [a, b, c]

where we have assumed that |a − c| = 1 (this assumption is
valid since we can always scale w to reflect how large or small
|a − c| is). In order to ensure a constant reduction factor in
the search interval, d and e are chosen to satisfy:

1− w
w

=
w

1− 2w
(30)

The only reasonable solution to (30) is w = 1
2 (3−

√
5). Once d

and e are chosen, the new bracket becomes (a, d, e) if E(d) <
E(e) and (d, e, c) otherwise. The best guess for the minimizer
of E at each iteration is the middle point of the bracket. The
algorithm is summarized in Alg. 2

Algorithm 2 Golden rule
Require: Loss function E(α), bracket (a, b, c).

1: w = 1
2 (3−

√
5)

2: d = a+ w|a− c|
3: e = c− w|a− c|
4: if E(d) < E(e) then
5: New bracket, [a′, b′, c′], becomes [a, d, e]
6: else
7: New bracket, [a′, b′, c′], becomes [d, e, c]
8: end if
9: return [a′, b′, c′]

If the golden rule is followed, we can see that the bracket
is guaranteed to decrease by a factor of 1

1−w .

The second bracket shrinking strategy is called Brent’s
algorithm [8]. The idea is to assume that the error surface,
E(α) is locally quadratic. We then fit a quadratic function
to the three points (a,E(a)), (b, E(b)), (c, E(c)) using the
regression approach we learned in class:

y =

E(a)

E(b)

E(c)

A =

1 a a2

1 b b2

1 c c2

x =

k0k1
k2

 (31)

x = A†y (32)

The resulting approximation for E(α) in the bracket (a, b, c)
is given by:

E(α) ≈ k0 + k1α+ k2α
2 (33)

Now, we can approximate the minimum of E(α) on the
interval (a, b, c) by minimizing the quadratic form for of E(α)
given in (33):

arg min
α∈(a,b)

(
k0 + k1α+ k2α

2
)

= −k1
k2

(34)

A new point d = −k1k2 is then chosen and the bracket is
adjusted to (a, d, b) if E(d) < E(b) and (d, b, c) otherwise.
The algorithm is summarized in Algorithm 3.

Algorithm 3 Brent’s algorithm
Require: Loss function E(α), bracket (a, b, c).

1: y = [E(a), E(b), E(c)]T

2: A =

1 a a2

1 b b2

1 c c2

3: x =

k0k1
k2

4: x = A†y = [k0, k1, k2]T

5: d = −k1k2
6: if E(d) < E(b) then
7: New bracket, [a′, b′, c′], [a, d, b]
8: else
9: New bracket, [a′, b′, c′], [d, b, c]

10: end if
11: return [a′, b′, c′]

The line search algorithm I used in my implementation is
a hybrid of the Golden rule and Brent algorithms. Given a
bracket [a, b, c], a new point d is then chosen using Brent’s
algorithm. If the new point is reasonable (a < d < c and
E(d) < E(b)), then d is used to form a new bracket. If the
new point is not reasonable, then the Golden rule is used to
form a new bracket. This procedure is iterated until |a−c| < τ ,
for some threshold τ . There is an edge case which should be
mentioned. If the gradient descent algorithm has converged
to a minimum, the line search should return α = 0. Due to
numerical errors, sometimes the line search does not recognize

0 2 4 6 8 10 12
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Iteration #

B
ra

c
k
e
t
s
iz

e

Convergence of hybrid bracketing algorithm

Fig. 2. Convergence of bracketing algorithm

that the algorithm has already converged and returns α >> 0,
which brings the algorithm far away from the local minimum.
To prevent this behavior, I put in a safety net at the end of the
line search which ensures that the minimizer of E(α) found by
the line search achieves a minimum which is less than E(0).
The other edge case that must be considered if if E(α) is flat
on the interval (a, c). In this case, if the bracket converges
to a flat part of E(α), we terminate the bracket shrinking
algorithm. The hybrid algorithm is summarized in Algorithm
4.

Algorithm 4 Hybrid line search
Require: Loss function E(α), bracket (a, b, c), threshold τ .

1: while |a−c| > τ &((E(a)−E(b))2 +(E(c)−E(b))2) >
1e− 3 do

2: [a′, b′, c′] = BRENT ([a, b, c])
3: if E(b′) < E(b) & ([a′, c′] ∈ [a, c]) then
4: [a, b, c] = [a′, b′, c′]
5: else
6: [a, b, c] = GOLDEN([a, b, c])
7: end if
8: end while
9: if E(b) < E(0) then

10: return b
11: else
12: return 0
13: end if

Fig. 2 shows bracket size as a function of iteration index
for the hybrid bracketing algorithm for a real test setup. We
can see that the bracket size decreases monotonically. Fig. 3
shows E(α) as a function of iteration index for the bracketing
algorithm. The monotonic decrease in E(α) suggests that the
bracketing algorithm is converging to a true local minimum
of E.

2) β Selection Stragegies: [1] suggests two strategies for
selecting β.

a) Fixed β: The easiest approach is to simply set β to a
fixed value for the duration of the gradient descent algorithm.

0 2 4 6 8 10 12
267.98

268

268.02

268.04

268.06

268.08

268.1

268.12

Iteration #

E
(α

)

E(α) as a function of iteration index for hybrid bracketing algorithm

Fig. 3. E(α) as a function of iteration index for hybrid bracketing algorithm

The approach suggested in [1] is

β =
d

σ̂2
(35)

where d is the dimensionality of the input space and σ̂2 is
defined as:

σ̂2 =
1

N

C∑
k=0

∑
Xi∈R0

k

‖Xi −m0
k‖2 (36)

where M0 = {m0
k, 1 ≤ k ≤ C} is the set of centroids

found by the k-means algorithm used to initialize the gradient
descent.

b) Annealing: Since fixing β to a finite number results in
a soft clustering algorithm which only approximates the hard
clustering goal, annealing approaches have been suggested
which progressively increase β [11]

β0 = a (37)

β(τ) = vβ(τ−1), v > 1 (38)

At each step, τ , the entire gradient descent algorithm is run
until convergence. In my experiments, I used 9 values of β,
as shown in Fig. 4.

3) Calculation of P̂Xi
: Several different non-parameteric

approaches for calculating P̂Xi are suggested in [1]. Namely,
k-nearest neighbors and Parzen windows are suggested as
valid ways of calculating P̂Xi

in [1]. I experimented with
both of these approaches, one parameteric density estimation
technique, and one neural network (NN) technique.

a) K-Nearest Neighbors (KNN): In the KNN approach,
P̂Xi

is estimated for the training data by forming a histogram
of the labels of the K nearest neighbors of each training point
(including the point itself):

P̂Xi
=

1

K

∑
j:Xj∈NK(Xi)

δYj
(39)

where NK(Xi) is the set of K nearest neighbors of Xi (where
distance is measured in the l2 sense), Yj is the label for Xj ,
and δYj

is the discrete Dirac-delta function δ(x − Yj). The

Fig. 4. βτ

value of K is an important tuning parameter. In [1], K = 10
was used for all experiments. In my case, I experimented with
several different values of K.

b) Parzen Windows: To estimate P̂Xi
using Parzen win-

dows, we begin with Bayes’s theorem:

p̂(Yi|Xi) =
p̂(Xi|Yi)p̂(Yi)∑C
k=1 p̂(Xi|Yk)p̂(Yk)

(40)

We estimate p̂(Yi) using:

p̂(Yi) =
1

N

N∑
n=1

δYj

To estimate p̂(Xi|Yi), we employ the Parzen window ap-
proach:

p̂(Xi|Yi) =
1

Ni

∑
j:Yj=i

1

hd
H

(
Xi −Xj

h

)
(41)

where d is the dimensionality of the input space, H is the ker-
nel function, and h is the width parameter. In my experiments,
I used the Gaussian kernel function with diagonal covariance
matrix, which leads to the following density estimate:

p̂(Xi|Yi) =
1

Ni

∑
j:Yj=i

1

(2πh2)
d
2

e−
‖Xi−Xj‖

2

2h2 (42)

The remaining design parameter is the choice of h. In the case
of d = 1, we know that the optimal choice of h is given by:

h∗ = 1.06σ̂N−1/5

where σ̂ is the estimate of the standard deviation of the data
and N is the number of data points. In the multivariate case,
we can argue that the smoothing parameter should be different
along different dimensions of the input space [10]. In effect,
we would need to estimate a full covariance matrix for the
data in order to reliably estimate the smoothing parameter for
each dimension. As an alternative, we note that if the data had
a unit covariance matrix, we could simply set h equal to to
h∗ for every dimension of the input space. We can achieve
this by applying a simple linear transform to the data. Let

X = [X1, X2, · · · , XN] be a matrix of N data points. Using
the SVD, we can write X as:

X = UΛV ∗ (43)

where U is the matrix of left singular vectors of X , Λ is a
diagonal matrix containing the singular values of X , and V
is the matrix containing the right singular vectors of X . Let’s
see what happens when apply the linear operator T (X) =
Λ−1U ∗X:

Y = T (X) (44)

= Λ−1U∗X (45)

where Λ−1 is a diagonal matrix whose entries are the singular
values of X raised to the −1 power. Now, let’s calculate the
covariance matrix for Y :

Y Y ∗ = Λ−1U∗X(Λ−1U∗X)∗ (46)

=1 Λ−1U∗XX∗UΛ−1 (47)

=2 Λ−1U∗UΛV ∗V ΛU∗UΛ−1 (48)

=3 Λ−1ΛΛΛ−1 (49)
= I (50)

where 1 uses the fact that
(
Λ−1

)∗
= Λ−1 since Λ is a

diagonal matrix, 2 also uses the fact that Λ is a diagonal
matrix, and 3 uses the fact that U and V are unitary matrices
(U∗U = UU∗ = I and V ∗V = V V ∗ = I). So, we see that Y
has a unit covariance matrix. Therefore, the density estimation
algorithm I used first learns a covariance diagonalizing linear
transformation for each class in the learning dataset, applies
the transform to each each class, and then computes the density
estimate in the transformed vector space. The algorithm is
summarized in Alg. 5.

Algorithm 5 Multivariate Parzen Window Density Estimation
Algorithm
Require: Dataset X = {Xi, 1 ≤ i ≤ N}

1: for 1 ≤ k ≤ c do
2: Jk = {i : Yi = k}
3: Xk = [Xj],∀j ∈ Jk
4: [U, S, V] = svd(Xk)
5: Y = S−1U∗Xk

6: p(Xj |Yj) = PARZEN(Xj , Y),∀j ∈ Jk
7: end for
8: return p(Yi|Xi) = p(Xi|Yi)p(Yi)∑c

k=1 p(Xi|Yk)p(Yk)

c) Gaussian Mixture Model (GMM): The GMM ap-
proach to calculating P̂Xi

is similar to the Parzen window
approach in that we start with Bayes’ theorem (40) and esti-
mate the class conditional densities P̂ (Xi|Yi) using a GMM.
In other words, for each class k, we estimate p(Xi|Yi = k)
as a mixture of M Gaussians:

p(Xi|Yi = k) =

M∑
j=1

p(Xi|jk)P (jk) (51)

where jk represents the j’th Gaussian component for the k’th
class.

I used the same EM algorithm to learn the GMM for each
label as we learned in class. The only slight modification I was
forced to make was to ensure that the covariance estimate,
Σ̂, at each iteration was positive definite by performing the
following modification:

Σ̂← Σ̂ + εI (52)

where ε is some small positive number.
d) NN: Neural networks naturally lend themselves to

posterior density estimation with the correct choice of error
criterion and output activation function [8]. Let tk be defined
as:

tnk =

{
1 if Yn = k

0 else
(53)

Also, let ynk be the k’th output for input Xn of our NN. We
would like ynk to represent P (Yn = k|Xn). Let yn and tn be
defined as:

yn = [yb1, y
b
2, · · · , ync] (54)

tn = [tn1 , t
n
2 , · · · , tnc] (55)

We can now write p(tn|Xn) as:

p(tn|Xn) =

c∏
k=1

(ynk)t
n
k (56)

The likelihood of the entire dataset is then given by:

p(T |X) =

N∏
n=1

c∏
k=1

(ynk)t
n
k (57)

If we form the negative log-likelihood, we find the objective
function which we need to minimize to train the network:

L4 = −
∑
n

c∑
k=1

tnk ln (ynk) (58)

If we consider the fact that tnk = δkl where Yn = l, we see that
the absolute minimum of L4 is obtained by setting ynk to its
maximum possible value for k = l. Since ynk is a probability,
the maximum value it can is 1. Consequently, the absolute
minimum of L4 is achieved for ynk = tnk and is given by:

L4,min = −
∑
n

c∑
k=1

tnk ln ynk (59)

If we subtract L4,min from L4, we get a new error function,
L5, which is lowered-bounded by 0 and achieves a minimum
of 0 for ynk = tnk :

L5 = −
∑
n

c∑
k=1

tnk ln

(
ynk
tnk

)
(60)

Finally, we see that we can write L5 in terms of the KLD:

L5 = −
∑
n

D(yn||tn) (61)

In order to interpret ynk as a proper posterior probability
P (Yn = k|Xn), we need to ensure that:∑

k

ynk = 1 (62)

ynk ≥ 0, 1 ≤ k ≤ c (63)

This leads us to use the logistic sigmoid activation function
for the output nodes of the NN:

yk =
exp(ak)∑
k′ exp(ak′

(64)

where ak is the activation for the k’th output node.
I implemented this approach in order to approximate P̂Xi

using a 2 layer NN. The only design parameter in my
implementation was the number of hidden nodes, h. To test
the influence of h on the quality of the resulting estimate of
P̂Xi

, I simulated various values of h and observed how they
affect the objective function minimization. The results for the
diabetes dataset are shown in Fig. 5. We can see that all of
values of h have close to the same performance, so I chose
h = 5 for the rest of my experiments.

For my experiments with the Human Activity Recognition
(HAR) task, I had to modify the NN training algorithm
slightly because of the high dimensionality of the search space.
Whereas I used a fixed step size to train the NN for the diabetes
dataset, I employed my line search algorithm to train the NN
for the HAR dataset.

Fig. 5. Influence of h on quality of posterior estimation for the diabetes
dataset using a NN

III. DIABETES DATASET VALIDATION

I conducted experiments using the diabetes dataset to val-
idate the ideas presented above. The diabetes dataset served
as an easy to work with, low dimensional dataset. All testing
was done in a 10-fold cross validation scheme. For each fold,
20% of the dataset was randomly selected to be the test set
and the rest was left for the training set. The accuracy results
were then averaged across all of the folds.

Two types of classifiers were used: a linear least squares
classifier and a two layer neural network with tanh activation

functions trained using the l2 error function. For least squares
linear classification, we approximate Yi using:

Ŷi = WXi (65)

where the matrix W is calculated in order to minimize:

L5 =

N∑
n=1

|Yi − Ŷi| (66)

The two layer neural network was also trained in a least
squares framework in order to minimize:

L6 =

N∑
n=1

c∑
k=1

(tnk − t̂nk)2 (67)

tnk = δ(k − Yn) (68)

t̂nk = g

 H∑
j=0

w̃kjg

(
D∑
i=0

wjiXi[i]

) (69)

g(a) = tanh(a) (70)

where c is the number of classes, H is the number of hidden
nodes, and D is the dimensionality of the input space.

IV. POSE CODEBOOK LEARNING FOR HUMAN ACTIVITY
RECOGNITION

A more interesting validation experiment is to see how
the supervised clustering approach performs with the task
of human activity recognition using depth videos [12]. Let
the depth video sequence be denoted by {Dt}Nt=1, where
Dt ∈ R(a×b). The first step is to perform skeletal tracking
on the depth video sequence in order to generate a sequence
of joint locations Jkt , where Jkt ∈ R2 and 1 ≤ k ≤ 15.
Jkt represents the pixel coordinates of the k’th joint in the
t’th frame. There are 15 joints: head, neck, left shoulder,
left elbow, left hand, right shoulder, right elbow, right hand,
torso, left hip, left knee, left foot, right hip, right knee, right
foot. Skeletal tracking is performed using OpenNI open-source
skeletal tracking software. The next step is to perform a
second layer of feature extraction on the joint locations Jkt .
The second layer features are defined by the angles between
the user’s body parts, which are defined by the segments
connecting the joints of the user. For instance, let J1

t , J
2
t , J

3
t be

the locations of the user’s neck, left shoulder, and left elbow,
respectively, for the t’th frame. Then, we can see that the
vector

v1 = J1
t − J2

t (71)

runs from the user’s left shoulder to the neck. Likewise, we
can see that the vector

v2 = J3
t − J2

t (72)

runs from the user’s left shoulder to the left elbow. Now, we
can determine the angle between v1 and v2 using the law of
cosines:

θ1 = arccos

(
vT1 v2
‖v1‖‖v2‖

)
(73)

We can then form a vector Pt ∈ R11 which defines the pose
of the user for the t’th frame using angles between the user’s
body parts. At this point, a pose code-book is learned in order
to reduce the dimensionality of the pose feature space. In [12],
k-means is used to learn a C cluster codebook. The pose code-
book is then used in a bag-of-words framework in order to
form a histogram of poses for a given test video. In other
words, given a test video Dt, we represent the video as U ∈
RC such that:

U(k) =
1

N
|{Pt : Pt ∈ Rk, 1 ≤ t ≤ N}| (74)

where Rk is the k’th partition induced by the clustering
operation. Finally, an SVM classifier is used to classify the
resulting histogram U . The histogram intersection kernel,
given by

Khist(U
1, U2) =

C∑
i=0

min(U1(i), U2(i)) (75)

is a natural choice for this algorithm since each video is
ultimately represented by a single histogram. Fig. 6 shows
a high level overview of the algorithm.

Fig. 6. Overview of activity recognition algorithm

For my purposes, the most interesting aspect of this algo-
rithm is the code-book generation process. This algorithm does
not fit into the framework shown in Fig. 1 because training
the classifier requires clustering, so we cannot operate under
the assumption that our classifier has been trained on perfect,
unquantized data. Nevertheless, we can see if using supervised
clustering can improve the activity recognition algorithm from
both the accuracy and computational perspectives.

V. DIABETES DATASET RESULTS

To test the algorithm, the first step was to ensure that my
gradient descent implementation functioned properly. Fig. 15
shows the convergence of the gradient descent algorithm for
various modes of the algorithm. For the fixed β flavor of the
algorithm, the iteration index represents the iteration index of
the gradient descent algorithm. For the annealing β strategy,
the iteration number is the index of the β value used, where
iterative gradient descent is performed every time a new β
is set. We can see that for each variant of the algorithm, we
have monotonic convergence of the gradient descent, which
indicates that the line search algorithm functions properly and
performs well for various types of posterior distributions.

Next, I experimented with different values of K for KNN
posterior density estimation with the diabetes dataset. Fig. 17
shows various values of K as a function of iteration index
for a 10-fold validation scheme. τ1 and τ2 are the tuning

Fig. 7. Convergence of gradient descent for KNN posterior estimation using
fixed β

Fig. 8. Convergence of gradient descent for Parzen window posterior
estimation using fixed β

Fig. 9. Convergence of gradient descent for GMM posterior estimation using
fixed β

Fig. 10. Convergence of gradient descent for cross entropy posterior estima-
tion using fixed β

Fig. 11. Convergence of gradient descent for KNN posterior estimation using
annealing β strategy

Fig. 12. Convergence of gradient descent for Parzen window posterior
estimation using annelaing β strategy

Fig. 13. Convergence of gradient descent for GMM posterior estimation using
annealing β strategy

Fig. 14. Convergence of gradient descent for cross entropy posterior estima-
tion using annealing β strategy

parameters for the gradient descent and line search algorithms,
respectively. The gradient descent stops when

L
(t−1)
3 − L(t)

3 < τ1 (76)

where t is the iteration index. The line search algorithm stops
when the bracket size becomes smaller than τ2.

Fig. 16 through Fig. 19 show the performance of the
clustering algorithms with the linear and NN classifiers, as
compared to unclassified data and the k-means algorithm. The
horizontal axis represents the number of clusters on a log scale.
Although it is difficult to make any conclusive arguments about
the influence of C on clustering with such a low dimensional
dataset, we can make some observations. First, we can see
that annealing does not have much of an effect on the overall
effectiveness of the clustering, and in fact sometimes leads
to worse results. Second, there seems to be a threshold for
the cluster number, after which performance doesn’t improve
by increasing the cluster number. Third, none of the posterior
pdf techniques seem to be best for all values of C, although
for higher values of C KNN outperforms the other techniques
across all experiments. Fourth, there is an interesting valley
in classification performance for C = 4 across all of the

0 5 10 15 20 25 30 35
80

100

120

140

160

180

200

220

240

260

Iteration #

L
o
s
s
 f
u
n
c
ti
o
n
 v

a
lu

e

Loss function value as a function of iteration index

K = 2

K = 5

K = 8

K = 10

Fig. 15. Influence of K on loss function minimization with 10-fold cross-
validation scheme and fixed β. C = 10, τ1 = 0.1, τ2 = 0.005, β = β0

Fig. 16. Linear classifier results for 10-fold cross-validation scheme and fixed
β strategy. C = 10, τ1 = 0.1, τ2 = 0.005, β = β0

experiments. For this case, the classifier accuracy falls to 50%,
which is equivalent to simply guessing one of the classes (for
a uniform prior for the class density). One explanation for
this behavior may be that for the case of C = 4, each class
is separated into two clusters and the clusters happen to fall
on opposite sides of the decision boundary, leading to this
poor behavior. Finally, it seems that unsupervised clustering
actually performs better than unsupervised clustering for the
linear and NN classifiers. This may be a result of the fact
that Kmeans is the optimal clustering strategy if we seek to
preserve the structure of the original input space, χ, and the
classifiers used in my experiments perform better when data
is clustered in an l2 optimal sense. For instance, we know that
the linear classifier can actually penalize correct predictions
due to the form of its error function, so clustering points that
are far apart, as minimization of information loss sometimes
does, can lead to unsatisfactory results.

VI. HAR RESULTS

I compared the performance of the human activity recog-
nition algorithm described above using supervised and unsu-

Fig. 17. Linear classifier results for 10-fold cross-validation scheme and
annealing β strategy. C = 10, τ1 = 0.1, τ2 = 0.005, β = βn

Fig. 18. NN classifier results for 10-fold cross-validation scheme and fixed
β strategy. C = 10, τ1 = 0.1, τ2 = 0.005, β = β0

Fig. 19. NN classifier results for 10-fold cross-validation scheme and
annealing β strategy. C = 10, τ1 = 0.1, τ2 = 0.005, β = βn

Fig. 20. Activity recognition classification rate using supervised and unsu-
pervised clustering (h = 10)

pervised clustering to learn the pose codebook. The results
are presented in Fig. 20. The dataset consisted of 13 actions.
We can see that the difference between the two clustering
algorithms is marginal for low cluster numbers, but supervised
clustering begins to perform better for the higher cluster
amounts. This result may stem from the fact that the per-
formance of Kmeans is highly dependent on the initialization
of the algorithm and it is only guarantee to converge to a
local minimum, even though that local minimum may be
a poor one. Minimization of information loss, on the other
hand, is a convex problem with a global minimum. Therefore,
I suspect that the superior performance of minimization of
information loss over Kmeans for higher cluster numbers is
due to the fact that the clustering achieved by minimization of
information loss improves with higher cluster numbers, from
an information theoretic point of view, while the performance
of Kmeans decreases with increasing cluster numbers because
the number of sub-optimal local minima increases as C grows.

I should note that I was only able to get reasonable cluster-
ing performance using the neural network posterior learning
technique (with h = 10). This may be due to the versatility of
the neural network approach to learn arbitrary distributions.

VII. CONCLUSION

In this report, I experimented with the minimization of infor-
mation loss clustering technique, using several posterior pdf
estimation techniques and several validation methodologies.
The results show that when the number of classes is low,
Kmeans outperforms minimization of information loss. On the
other hand, if the number of classes is high and the input space
is high dimensional, we can see some improvement in the clas-
sification performance of data clustered using minimization of
information loss compared to Kmeans.

REFERENCES

[1] S. Lazebnik and M. Raginsky, ”Supervised Learning of Quantizer Code-
books by Information Loss Minimization,” IEEE Trans. Pattern Analysis
and Machine Intelligence, vol. 31, No. 7, July 2009.

[2] I.Dhillon, S. Mallela, and R. Kumar, ”A Divisive Information Theoretic
Feature Clustering Algorithm for Text Classification,”J. Machine Learn-
ing Research, vol. 3, pp. 1265-1287, 2003.

[3] B. Ni, G. Wang, P. Moulin, ”RGBD-HuDaAct: A Color-Depth Video
Database For Human Daily Activity Recognition.” Consumer Depth
Cameras for Computer Vision. Springer London, 2013. 193-208.

[4] N. Slonim and N. Tishby,”Document clustering using word clusters via
the information bottleneck method,” Proceedings of the 23rd annual
international ACM SIGIR conference on Research and development in
information retrieval. ACM, 2000.

[5] N. Slonim, ”The information bottleneck: Theory and Applications.”
Dissertation. Hebrew University of Jerusalem, 2002.

[6] S.D. Chen and P. Moulin, ”A Two-Part Predictive Coder for Multitask
Signal Compression,” In preparation.

[7] T.M. Cover and J.A. Thomas, ”Elements of Information Theory,” 2006.
[8] C.M. Bishop, ”Neural Networks for Pattern Recognition.”
[9] Lecture 7: Minimization or maximization of functions (Recipes

Chapter10). Available: http://www.pha.jhu.edu/∼neufeld/numerical/
lecturenotes7.pdf

[10] R. Gutierez-Osuna. Lecture 10: Density estimation II. Available: http:
//courses.cs.tamu.edu/rgutier/cs790 w02/l10.pdf

[11] K. Rose, ”Deterministic Annealing for Clustering, Compressions, Clas-
sification, Regression, and Related Optimization Problems,” Proceedings
of the IEEE, Vol. 86, No. 11, Nov. 1998.

[12] V. Escorica, M. A. Davila, M. Golparvar-Fard, J.C. Niebles, ”Automated
Vision-based Recognition of Construction Worker Actions for Building
Interior Construction Operations Using RGBD Cameras,” CRC 2012.

