
1

ECE544NA Final Project: Robust Machine
Learning Hardware via Classifier Ensemble

Sai Zhang, szhang12@illinois.edu
Dept. of Electr. & Comput. Eng., Univ. of Illinois at Urbana-Champaign, Urbana, IL, USA

Abstract—In this paper, we propose to use classifier ensemble
(CE) as a method to enhance the robustness of machine learning
(ML) kernels in presence of hardware error. Different ensemble
methods (Bagging and Adaboost) are explored with decision tree
(C4.5) and artificial neural network (ANN) as base classifiers.
Simulation results show that ANN is inherently tolerant to
hardware errors with up to 10% hardware error rate. With
simple majority voting scheme, CE is able to effectively reduce
the classification error rate for almost all tested data sets,
with maximum test error reduction of 48%. For tree ensemble,
Adaboost with decision stump as weak learner gives best results;
while for ANN, bagging and boosting outperform each other
depending on data set.

I. INTRODUCTION

This project is motivated by recently works appeared in
machine learning (ML) on silicon [1]. There is a growing
interest in VLSI and circuit area to efficiently bring ML
kernels onto silicon, largely due to the performance and power
limitation of software only approaches. On the other hand,
in deep sub-micro era, devices exhibit statistical behaviors
which degrade the system reliability. To reduce the energy
consumption of circuits, sub/near threshold computing has
been proposed to offer 10X power reduction at the expense
of large delay variation as shown in Fig. 1. To enhance the
reliability and robustness of ML kernels on silicon, Verma et
al. propose to utilize ML algorithm to efficiently learn the
error behavior and make correct prediction/classification in
presence of hardware errors. Kim [2] et al. shows that some
ML algorithm inherently has tolerance to hardware errors.
These work motivate us to look into methods to effectively
enhance the robustness of ML kernels in presence of hardware
errors.

Fig. 1. With reduced supply voltage, energy efficiency is improved but delay
variation is larger.

Classifier ensemble (CE, also referred to as Multiple Classi-
fier System) have been employed to enhance the performance
of single classifier system [3], [4]. As summarized in [5]–
[8], popular ensemble methods include: Bagging, Adaboost,
Bayesian voting, Random forest, Rotation forest, Error cor-
recting output coding, etc. In terms of decision combining,
[9], [10] summarizes typical classifier fusion methods.

Therefore, in this paper, we explore the idea of using CE
to enhance the robustness of ML kernels. Different ensemble
methods (Bagging and Adaboost) are explored with decision
tree (C4.5) and artificial neural network (ANN) as base
classifiers. Simulation results show that ANN is inherently
tolerant to hardware errors with up to 10% hardware error rate.
With simple majority voting scheme, CE is able to effectively
reduce the classification error rate for almost all tested data
sets, with maximum test error reduction of 48%. For tree
ensemble, Adaboost with decision stump as weak learner gives
best results; while for ANN, bagging and boosting outperform
each other depending on data set. The rest of the report is
organized as follows: section 2 gives background of the CE
methods we use in the project, section 3 presents error model,
and simulation setup; section 4 presents simulation results with
conclusion provided in section 5.

II. BACKGROUND

A. Ensemble Methods

We give a brief overview of methods to construct classifier
ensembles.

1) Average Bayes Classifier: In the average Bayes setting,
every classifier output is interpreted as a posterior probability
of class membership, condition on the input and the hypothe-
sis.

h(x) = P (f(x) = y|x, h) (1)

Here we assume the hypothesis follow a distribution in
the hypothesis space H . If the hypothesis space is small, it
is possible to enumerate all possible classifiers (h(x)). The
final output is the average of these hypothesis, weighted by
the posterior probability of h(x), as shown in the following
equation:

P (f(x) = y|S,x) =
∑
h∈H

h(x)P (h|S) (2)

Using Bayes rule, we can write the posterior probability
P (h|S) as:

2

P (h|S) ∝ P (S|h)P (h) (3)

The practical difficulty in implementing this method lies
in that when the hypothesis space is large, it is difficult to
enumerate all h(x), also it is not always possible to know the
prior of each of the hypothesis. Fig. 2 provides a illustration
of the algorithm. The true mapping which the algorithm tries
to learn is denoted as f(x). To construct the ensemble, all
hypothesis h(x) in the space H is learned, and the final
mapping is a weighted average based on (2).

Fig. 2. Average Bayes Classifier

2) Bagging: Bootstrap aggregating is a popular method
to construct ensembles. The basic idea is to first generate
many training sets from original training samples by random
sampling with replacement, then train multiple classifiers, each
based on one of the training sets, as shown in Fig. 3. By
random sampling with replacement, each training set contains
on average 63.3% of the original training set. The final
decision is made by taking the majority voting of individual
weak classifiers. Bagging has been shown to improve the
performance of unstable classifiers, such as neural networks,
decision trees etc.

3) Adaptive Boosting: Adaboost is another popular method
for ensemble generation. The basic idea can be depicted in
the Fig. 4. The training has T iterations; each iteration will
produce a new weak classifier. The basic idea is that after
each iteration step, the examples are re-weighted so that miss-
classified examples get higher weight. In the subsequent iter-
ation step, the training process will focus more on classifying
the miss-classified samples from previous iteration.

Fig. 5 gives the algorithm flow of Adaboost. Note that the
basic idea of Adaboost is very similar with Bagging, with
two notable differences: 1) in generating different training
sample, Bagging uses random sample with replacement while
Adaboost uses the accuracy of previous classifiers to guide the
selection of subsequent training samples; and 2) Bagging uses
simple majority voting to generate decision while Adaboost
uses weighted average.

It can be shown that the selection of training sample distri-
bution and weights in Adaboost will minimize an exponential
loss function defined as

Fig. 3. Bagging

Fig. 5. Adaboost algorithm

L(f(x), y) =

N∑
i

exp(−yif(xi)) (4)

Proof:
We are trying to find a classifier of the form:

H(x) =

M∑
m=1

αifm−1(x)

to minimize loss in (4). At step m, we have

Hm(x) = Hm−1(x) + αmfm(x)

The minimization problem can be formulated as:

3

Fig. 4. Adaboost

[αm, fm] = argmin
α,f

N∑
i

exp(−yi(Hm−1(x) + αf(x)))

⇔
[αm, fm] =

argmin
α,f
{
N∑
i

exp(−yiHm−1(x)) · exp(α)1[yi 6= f(x)]

+

N∑
i

exp(−yiHm−1(x)) · exp(−α)1[yi = f(x)]}

⇔
[αm, fm] =

argmin
α,f
{exp(α)

N∑
i

exp(−yiHm−1(x)) · 1[yi 6= f(x)]

+ exp(−α)(
N∑
i

exp(−yiHm−1(x))

−
∑

exp(−yiHm−1(x)) · exp(−α)1[yi = f(x)])}

This is equivalent to

[αm, fm] =

argmin
α,f
{exp(α)

N∑
i

wm−1(i) · 1[yi 6= f(x)]

+ exp(−α)(1− wm−1(i)) · exp(−α)1[yi = f(x)])}

where wm−1(i) = exp(−yiHm−1(x)
N∑
i
exp(−yiHm−1(x))

, we can further

simplify the optimization into:

[αm, fm] = argmin
α,f
{exp(−α) +

[exp(α)− exp(−α)]
N∑
i

wm−1(i) · 1[yi 6= f(x)]}

The optimal α and f can be solved by setting the derivative
with respect to them to 0, we can thus obtain the optimal
αm, fm as:

fm = argmin
f

N∑
i

wm−1(i) · 1[yi 6= f(xi)]

αm =
1

2
log(

1− εm
εm

)

where εm =
N∑
i

wm−1(i) · 1[yi 6= f(x)]. Therefore, we can

see that in Adaboost, the distribution and weight are selected
such that the loss function in (4) is minimized.

4) Injection Randomness: The final method to construct en-
semble is by injecting randomness into the classifier. For good
ensemble performance, the weak classifier used to construct
the ensemble need to be unstable. Good unstable classifiers
are trees or neural networks. In the random injecting method,
the ensemble is constructed by simply changing the initial the
weights of NN, or choosing randomly the features used to split
the trees.

B. Decision Combination

The second important aspect of CE is to decide how to com-
bine the output of each classifier to obtain the final decision.
Many decision combination methods have been proposed, as
shown in Fig. 6. If the output of each classifier is not a hard
decision but a continuous measure. We can use averaging
method to get the ensemble output, popular averaging method
includes mean, median, weighted mean etc. If the output of
classifier is a discrete number, voting methods can be used.
The simplest voting methods is majority voting, which takes
the final output as the class most of the classifiers agree on.
Weighted average method can also be used to weight the
decision of each classifier based on their accuracy measure
as in the case of Adaboost.

III. METHODOLOGY

A. Hardware error simulation

Error injection is performed in simulation level since we
do not have realistic hardware realization of the classifiers.
The error injection presents difficulty due to at least two

4

Fig. 6. Decision combination methods

requirements: 1) the mapping from input space to output error
space need to have sufficient randomness, other wise it will be
trivial to remove the error by adding some bias to the network
output. 2) for same input pattern, it will always generate the
same ‘random’ error pattern. To solve this issue, we use a
input pattern dependent random number generator for error
injection, as shown in Fig. 7. When presented with a feature
vector, the random generator uses each dimension as a seed to
generate a Gaussian random number; the random number from
different dimension are then added and scaled to provide an
output err ∼ N(0, 1). This method ensures that for different
feature vector, the generated random errors are different, while
at the same time same feature vector always results in same
error value.

The err is then used to inject hardware errors into trees
and ANNs. For decisions tree, we generate two thresh-
old Threshold1 and Threshold2 for each node, when err
falls into the interval [Threshold1, Threshold2],the deci-
sion of the node is flipped. For ANNs, similar thresholds
are generated for each weight, and if the err falls into
[Threshold1, Threshold2], the weight matrix is perturbed to
simulate hardware defects. We can control the error rate by
controlling the thresholds, i.e. higher error rate can be achieved
if Threshold2 − Threshold1 is increased.

Fig. 7. Error injection methodology

B. Experiment Setup

Table I shows the experiment setup. In this project, we
explore Bagging and Adaboost with ANN and C4.5 decision
tree and decision stump (a decision tree with depth 1) as
base classifiers. When training ANN, random initial weights
are used to further introduce diversity into the ensemble. For
Adaboost, we use weighted voting as shown in Fig. 5, and for

TABLE I
EXPERIMENTAL SETUP

Base Classifier Ensemble Methods Combination
ANN Bagging Majority voting
C4.5 Boosting Weighed voting

Dec. stump Initial weights

Bagging, simple majority voting scheme is employed. We use
4 data sets from UCI machine learning repository. For each
data set, 10 fold cross-validation methods are used to evaluate
their performances.

IV. RESULTS

Fig. 8 shows the test error rate vs. ensemble size for
all evaluated ensemble methods. For Bagging with decision
trees, test error rate decreases as ensemble size increases for
both hardware error free (red) and hardware error injected
(blue) case. However, hardware error degrade the performance
of the ensemble and this degradation cannot be effectively
compensated for with increased ensemble size. For Adaboost
with decision tree, Fig. 8 indicates that the ensemble suffer
from over-fitting. As ensemble size grows, the error rate first
decreases, then starts to increase at ensemble size of 3 and
2 for error free and erroneous case. Adaboost with decision
stump gives best performance in the family of tree ensembles,
the error injected ensemble almost achieves the same error
reduction as the error free ensemble. For ANN with bagging,
both error injected and error free ensemble achieve effective
reduction of test error rate with increasing ensemble size.
However, for ANN with Adaboost, over-fitting starts to occur
at ensemble size of 4 and 3 for error free and erroneous
ensemble, respectively.

Fig. 8. Results: test error rate vs. ensemble size

Fig. 9 shows the result for 4 data set from UCI machine
learning repository at different injected hardware error rate.
From the figure several observation can be made:

1) In terms of inherent error tolerance, ANN is better
than decision trees. This can be seen from Fig. 9 by noting
that at 3% error rate, erroneous C4.5 already have severely
degraded performance at data set 1 and 2, but ANN is able
to maintain similar performance regardless of error injection

5

Error rate of tree ensemble Error rate of NN ensemble

1 2 3 4
0

0.2

0.4

0.6

0.8

1 2 3 4
0

0.2

0.4

0.6

0.8

1 2 3 4
0

0.2

0.4

0.6

0.8

1 2 3 4
0

0.2

0.4

0.6

0.8

1 2 3 4
0

0.2

0.4

0.6

0.8

1 2 3 4
0

0.2

0.4

0.6

0.8

C
4
.5

 e
rr

o
r

fr
e
e

C
4
.5

 e
rr

o
r

in
je

c
te

d

C
4
.5

 b
a
g
g
in

g
C

4
.5

 b
o
o
s
ti
n
g

D
e
c
 s

tu
m

p
 b

o
o
s
ti
n
g

N
N

 e
rr

o
r

fr
e
e

N
N

 e
rr

o
r

in
je

c
te

d

N
N

 b
a
g
g
in

g
N

N
 b

o
o
s
ti
n
g3%

20%

10%

Fig. 9. Results: test error rate for different data set at error rate of 3%, 10% and 20%

till 10% percent error rate. The difference can be partially
explained by noting that for decision trees, at each node a
hard decision is made, so error have high chance to propagate
to output, while for ANN, each layer does not make a hard
decision but use a sigmoid function to suppress the output,
which might help reduce the effect of node errors.

2) For tree ensemble, Adaboost with decision stump always
give best performance, consistent with Fig. 8. Boosting de-
cision tree tends to suffer from over-fitting at low error rate.
This problem is mitigated at high error rate due to the fact
that at high error rate, the ensemble size tends to be reduced.

3) For ANN ensemble, Adaboost and Bagging can out
perform each other depending on data set, and there is no
consistent behavior across different error rate. The over-fitting
problem of ANN is less severe compared with trees, and
similarly the over-fitting gets mitigated at high error rate due
to the reduction of ensemble size.

V. CONCLUSION AND FUTURE WORK

In this paper, we show that CE is an effective method
to enhance the robustness of ML hardware. Bagging and
Adaboost are explored with decision tree and ANN as base
classifiers. Simulation results show that ANN is inherently
tolerant to hardware errors with up to 10% hardware error rate.
With simple majority voting scheme, CE is able to effectively
reduce the classification error rate for almost all tested data
sets, with maximum test error reduction of 48%. For tree
ensemble, Adaboost with decision stump as weak learner gives
best results; while for ANN, bagging and boosting outperform
each other depending on data set. In the future, we can extend
the framework to include more ensemble methods, to handle

multi-class problems, to mitigate the over-fitting problem by
using regularization. Also it will be helpful to implement part
of the algorithm in hardware to evaluate the performance of
CE on ML kernels.

ACKNOWLEDGMENT

The author would like to thank Prof. Hasegawa-Johnson and
Sujeeth Subramanya Bharadwaj for their help and guidance.

REFERENCES

[1] N. Verma, K. H. Lee, K. J. Jang, and A. Shoeb, “Enabling system-level
platform resilience through embedded data-driven inference capabilities
in electronic devices,” in Acoustics, Speech and Signal Processing
(ICASSP), 2012 IEEE International Conference on, 2012, pp. 5285–
5288.

[2] J. Choi, E. P. Kim, R. A. Rutenbar, and N. R. Shanbhag, “Error
resilient mrf message passing architecture for stereo matching,” in Signal
Processing Systems (SiPS), 2013 IEEE Workshop on, 2013, pp. 348–353.

[3] L. ying Yang, Z. Qin, and R. Huang, “Design of a multiple classifier
system,” in Machine Learning and Cybernetics, 2004. Proceedings of
2004 International Conference on, vol. 5, 2004, pp. 3272–3276 vol.5.

[4] G. Giacinto, F. Roli, and G. Fumera, “Design of effective multiple
classifier systems by clustering of classifiers,” in Pattern Recognition,
2000. Proceedings. 15th International Conference on, vol. 2, 2000, pp.
160–163 vol.2.

[5] T. G. Dietterich, “Ensemble methods in machine learning,” in MULTI-
PLE CLASSIFIER SYSTEMS, LBCS-1857. Springer, 2000, pp. 1–15.

[6] J. Rodriguez, L. Kuncheva, and C. Alonso, “Rotation forest: A new
classifier ensemble method,” Pattern Analysis and Machine Intelligence,
IEEE Transactions on, vol. 28, no. 10, pp. 1619–1630, 2006.

[7] D. Opitz and R. Maclin, “Popular ensemble methods: An empirical
study,” Journal of Artificial Intelligence Research, vol. 11, pp. 169–198,
1999.

[8] L. B. Statistics and L. Breiman, “Random forests,” in Machine Learning,
2001, pp. 5–32.

6

[9] L. Xu, A. Krzyzak, and C. Suen, “Methods of combining multiple
classifiers and their applications to handwriting recognition,” Systems,
Man and Cybernetics, IEEE Transactions on, vol. 22, no. 3, pp. 418–
435, 1992.

[10] T. K. Ho, J. Hull, and S. Srihari, “Decision combination in multiple
classifier systems,” Pattern Analysis and Machine Intelligence, IEEE
Transactions on, vol. 16, no. 1, pp. 66–75, 1994.

