
ECE544NA Final Project: Malicious Code Execution
Detection Using Bottleneck Stacked Autoencoder

Man Ki Yoon
Real-Time Systems Integration Lab., Dept. of Computer Science

Email: mkyoon@illinois.edu

Abstract—In this project, Bottleneck Stacked Autoencoder, a
deep learning method, is used to model the normal program
(application) behavior and to detect abnormal behavior in terms
of the system call usage. The method is evaluated by applying the
proposed approach to an example application in which malicious
code are embedded. The evaluation results show its effectiveness
in terms of the detection accuracy and false positive rates, which
are even comparable to Gaussian Mixture Model.

I. INTRODUCTION

Real-time embedded systems are increasingly attracting
attackers looking to compromise their safety and security.
Protecting such systems from the attacks is challenging due to
the ever-growing complexity of modern real-time embedded
systems/applications; the additional complexity, in turn, ex-
poses more security flaws [11]. Thus, instead of attempting to
prevent every possible security breach, detection of intrusion,
such as malicious code execution, by monitoring the applica-
tion’s behavior has drawn a great deal of attention due to its
ability to detect novel attacks; an anomaly, i.e., deviation, from
the expected/normal behavior is considered malicious [3], [4].
Real-time embedded applications are a good fit for this type
of security mechanism due to the regularity in their execution
behavior; the set of what constitutes legitimate behavior is
limited by design and also due to the (typically) small input
set space.

Behavior-based intrusion detection systems (IDS) rely on
specific behavioral signals such as network traffic [6], [12],
control flow [1], system calls [5], [13], timing [14], etc. Among
these, the system call has been of primary interest for use in
behavior-based IDSes. The main reason is that many malicious
activities involve accesses to system resources, such as file,
I/O devices, etc., and they use system calls to carry out
privileged operations. Intrusion detection is performed based
on the assumption that an attack would show anomalies in
system call usage during its execution.

Thus, this project addresses an intrusion detection method
for real-time embedded applications using system calls, specif-
ically in the form of the distribution of system call frequen-
cies 1. It is a vector of non-negative integers, where each
entry represents the number of occurrences of a particular
system call type for an execution. Figure 1 shows an example
distribution of system call frequencies. The underlying idea
is that normal executions would follow an expected pattern of

1The term ‘distribution’ here is nothing to do with probability distribution.

system call usage – this assumption holds for real-time systems
that exhibit very little variations during execution. Another,
related, assumption is that malicious activities will exhibit a
different pattern of system call usage. For example, malware
that leaks out a sensitive information would use some network-
related system calls (e.g., socket, connect, write, etc.)
thus changing the frequencies of these calls. Hence, given a
distribution obtained at runtime, a legitimacy test is carried out
to check for the likelihood of the execution being a part of the
expected executions. In order for an attacker to deceive such a
test, he/she would need to not only know what the legitimate
system call distribution looks like, but also be able to carry
out the intended attack within the limited set of calls – both
of these are very difficult to realize.

The application we monitor, however, may exhibit multiple
execution contexts due to, say, different execution modes
and/or inputs. In such cases, the system call frequency distribu-
tions (SCFDs) observed in different execution contexts could
show considerable differences. For example, when uploading
data to a server, the number of read and write calls
used for larger data sets would be clearly different from the
number of such calls for smaller data sets. Hence, representing
such situations by a single behavioral context can lead to
inaccuracies in the model(s) due to the smoothing out of
irregularities. Thus, one can use, for example, k-means [10]
or Gaussian Mixture Model (GMM) to find distinct execution
contexts from a set of SCFDs. By using such methods,
we can estimate the probability density of the SCFDs that
represent the normal/legitimate behavior of the application

29

101

2

3

5

1

2 2

3
4

1

10

100

write read mmap open close fstat munmap socket connect stat

N
um

be
r o

f c
al

ls


Fig. 1. A system call frequency distributions obtained from an example ap-
plication. Each represents how many times it is called/used by the application
during one execution.



under monitoring.
In this project, instead, a neural network-based approach

is investigated. To be more specific, the Bottleneck Stacked
Autoencoder [2], [8] is used to learn the system call frequency
distributions of normal, legitimate executions and then to
perform an anomaly detection. It is a deep network consisting
of multiple Restricted Boltzmann Machines (RBMs), stacked
one by one vertically, and thus enables us to learn high-
order features of the inputs. As will be detailed in the next
section, it can be used to learn the clusters of (normal)
SCFDs by properly configuring the hidden layers. The ex-
perimental results of the proposed approach, based on an
example application and various attack scenarios, show that
the Bottleneck Stacked Autoencoder can effectively detect
abnormal execution behavior.

A. Assumptions

The following assumptions are made without loss of gen-
erality: (i) The threat model is any malicious activities that
use a collection of system calls. If it does not use any (e.g.,
tainting a data on memory), the activity at least has to affect
executions afterward so that the future system call distribution
may change. The proposed detection method cannot detect
attacks that never alter system call usage. (ii) A malicious
code can be secretly embedded in the application, either
by remote attacks or during upgrades. The malicious code
activates itself at some point after the system initialization. (iii)
Every distinctive execution contexts are present when being
profiled. This can be justified by the fact that most real-time
embedded applications have a limited set of execution modes
and input data are within fairly narrow ranges.

II. MALICIOUS CODE EXECUTION DETECTION USING
BOTTLENECK STACKED AUTOENCODER

This section explains how to model, train, and use Bot-
tleneck Stacked Autoencoder for the detection of abnormal,
malicious system call frequency distribution of the application
under monitoring.

A. Definitions

Let S = {s1, s2, . . . , sD} be the set of all system calls pro-
vided by an operating system, where sd represents the system
call of type d.2 During the nth execution of an application,
it calls a multiset σn of S. Let us denote the nth system
call frequency distribution (or just system call distribution)
as ~x(n) = [m(σn, s1),m(σn, s2), . . . ,m(σn, sD)]T , where
m(σn, sd) is the multiplicity of the system call of type d in
σn. Hereafter, m(σn, sd) is simplified as xnd . Thus,

~x(n) = [xn1 , x
n
2 , . . . , x

n
D]T . (1)

2The number of system call types, i.e., D, is quite large in general. For
example, in Linux 3.2 for x64, there are 312 system call types. However,
an application normally uses a small set of system calls. Furthermore, the
dimensionality can be significantly reduced by ignoring system call types
that never vary.

Visible layer

1st hidden layer

2nd hidden layer

3rd hidden layer

…


First-order features

Second-order features

Third-order features

Fig. 2. Bottleneck Stacked Autoencoder.

Next, we define a training set, i.e., the execution profiles
of a sanitized system, as a set of N system call frequency
distributions collected from N executions, and is denoted by

X = [~x(1), ~x(2), . . . , ~x(N)]T . (2)

Note that in our anomaly detection problem, the training set
purely consists of normal data, and thus the learning problem
is semi-supervised.

B. Bottleneck Stacked Autoencoder with Two Hidden Layers

As briefly explained in the previous section, a stacked au-
toencoder enables learning of high-order feature representation
of data (inputs) by stacking several RBMs (see Figure 2); the
first hidden layer learns the first-order features in the raw input,
and then the second layer learns the second-order features by
grouping some of the first-order features, and so on. Thus,
the multiple hidden layers makes it possible to learn some
hierarchical grouping of the input.

This hierarchical grouping fits well to the anomaly detection
problem considered in this project. That is, in general, an
application shows widely varying system call distributions due
to multiple execution modes and a wide range of possible
inputs. In such scenarios, finding a single multivariate Gaus-
sian distribution (i.e., a single cluster/centroid) for the whole
set can result in inaccurate models because it would include
even many non-legitimate points that belong to none of the
execution contexts. Thus, it is more desirable to consider that
observations are generated from a set of distinct distributions,
each of which corresponds to one or more execution contexts,
and each execution makes a small variation from each of the
distribution it is generated from. This is a valid model for real-
time embedded systems since the code in such system tends
to be fairly limited in what it can do – hence such analyses
is quite powerful in detecting variations and hence, catching
intrusions.

In the problem being considered here, the network is
modeled with two hidden layers (i.e., two RBMs) as shown
in Figure 3; this is sufficient to learn the clusters of normal
system call frequency distributions, in which, again, each data
point (input token) is a vector of integers. More specifically,
the first hidden layer, ~h1, consists of Gaussian units, and the
second hidden layer, ~h2, consists of binary units. With this
model, each of the first hidden layer unit corresponds to a



h1 

h2 

Gaussian unit

Binary unit

a direction in v space 

v1 

v2 

selects a subset of directions 
and forms a cluster 

v1 

v2 

v 

Fig. 3. Bottleneck Stacked Autoencoder with Gaussian-Binary hidden layers.

direction in the v-space, i.e., the input space, and then each of
the second hidden layer units selects some of the directions to
form a particular cluster.

The training of the network is done layer-wise; we first learn
the first RBM with the training set X as the visible nodes
and then use the hidden layer of the first RBM as the input
(visible) nodes of the second RBM. Here, the first RBM, in
which both visible and hidden units are Gaussian, is trained
by the stochastic Contrastive Divergence (CD) algorithm [7],
[9] as covered in the class. The learning of the second RBM,
in which the hidden units are binary, is also done by the CD
algorithm but is slightly different from the case of Gaussian
hidden units. First of all, since we have trained the first RBM,
ĥ
(n)
1 for n = 1, . . . , N can be calculated by the weights, w1,

and the biases, ~c1 and ~b1 (see Figure 4). Then, each h(n)2,k for
the nth training token is activated (that is, having 1) with the
probability

Pr
(
h
(n)
2,k = 1

∣∣∣ĥ(n)1

)
= σ

(
~w2,kĥ

(n)
1 + c2,k

)
, (3)

where σ(a) = 1/(1+exp(−a)) is the sigmoid function. Once
we have sampled ĥ

(n)
2 , we then reconstruct the first hidden

layer by

h̃
(n)
1 = E

[
ĥ
(n)
1 |w2,~b2

]
= wT

2 ĥ
(n)
2 +~b2.

Then, the weights and biases are updated as follows (similar
to the case of Gaussian-Gaussian units of the first RBM):

w2 = w2 + η
(
ĥ
(n)T

1 ĥ
(n)
2 − h̃(n)

T

1 Pr
(
~h
(n)
2 = 1

∣∣∣h̃(n)1

))
(4)

~b2 = ~b2 + η
(
ĥ
(n)
1 − h̃(n)1

)
(5)

~c2 = ~c2 + η
(
ĥ
(n)
2 − Pr

(
~h
(n)
2 = 1

∣∣∣h̃(n)1

))
, (6)

where η is the learning rate, and Pr
(
~h
(n)
2 = 1

∣∣∣h̃(n)1

)
is a

vector of Pr
(
h
(n)
2,k = 1

∣∣∣h̃(n)1

)
for k = 1, . . . ,K, which can

be calculated by (3) (Notice h̃
(n)
1 , not ĥ(n)1 ). The network

is trained with these update rules, iterating over the entire
training set for multiple times (e.g., 100 times).

v1 vD

… …

vi

h1,j
… …

h2,k

h1,M

h2,Kh2,1

h1,1

c1,
j

w1,j,i

w2,k,j

b1,i

c2,k
b2,j

1

1

1

1

Fig. 4. Notations of visible and hidden nodes, weights, and biases in
bottleneck stacked autoencoder with two RBMs.

Now, suppose we have learned the weights (w1,w2) and
biases (~b1,~b2,~c1,~c2) using the training set. Let us denote the
parameters as π. Then, given a test token ~x, that is, a system
call frequency distribution observed from the application under
monitoring in the run-time, its legitimacy test (whether or not
it is abnormal given the training set) is done by calculating
Pr(~v|π) where ~v = ~x. Intuitively, it should be high enough for
the test tokens that are similar (or close) to what we have seen
during the training (provided that the training was properly
done). In other words, we should be able to reconstruct the
given token using the parameters π. To find Pr(~v|π), we first
feed forward the given test token ~x into the network by setting
~v = ~x. Then, the first hidden layer units become having

ĥ1 = E
[
~h1|π,~v

]
= w1~v + ~c1 (7)

since the units are Gaussian. Similarly,

ĥ2 = E
[
~h2|π, ĥ1

]
= σ

(
w2ĥ1 + ~c2

)
(8)

since the second hidden layer’s units are binary. Then, we try
to reconstruct the first hidden layer and then the visible layer.
First,

h̃1 = E
[
~h1|π, ĥ2

]
= wT

2 ĥ2 +~b2 (9)

Then,

ṽ = E
[
~v|π, h̃1

]
= wT

1 h̃1 +~b1 (10)

As mentioned above, the input token ~v = ~x should be close
to the ṽ, reconstructed from the hidden nodes by using the
parameters π learned from the training set, if ~x is normal.
Since the visible units are Gaussian, Pr(~v|π) ≈ Pr(~v|π, h̃1)
can be defined by a Gaussian distribution centered at ṽ. That
is,

Pr(~v|π) ≈ N
(
~v;µ = ṽ,Σ = I

)
, (11)

where Σ = I is due to the conditional independence between
the visible nodes given h̃1. This can represent how well the
input token ~v = ~x is reconstructed by the hidden units. Finally,
the legitimacy test of a given test token can be performed by
checking if (11) is lower than a pre-defined threshold, θ. If is
is, we consider that the application behavior corresponding to
~x is malicious.



Receive a 
raw image

Begin

End

Start

Flow 1

JPEG 
compression

Write to file

FTP upload

HTTP 
logging

Flow 2

Attack 1 or 2

Attack 3

open, close, read, !
write, mmap!

open, close, fstat, !
write, mmap, munmap 

open, close, fstat, !
read, write, socket, !
mmap, munmap, connect 

fstat, mmap, write, !
socket, stat, connect, !
sendto, close 

Fig. 5. The execution flow of the target application and the system call types
used at each stage.

III. EVALUATION

In this section, the intrusion detection method described in
the previous section is evaluated with an example application.

A. Target Application Model

I implemented a target application that works as follows
(Figure 5). The application runs periodically, and during each
execution instance, it (a) captures a raw image from a webcam,
(b) compresses it to a JPEG file, (c) uploads the file to an
FTP server and finally (d) writes a log via a HTTP post. The
distributions of the system call frequencies exhibited by the
application is mainly affected by the stages after the JPEG
compression. While the amount of memory required by a raw
image is always fixed (e.g., 2.6 MB for 1280 x 720 resolution),
a JPEG image size can vary (27 KB – 97 KB) because of
compression. This results in a variance in the number of
read and write system calls. In order to include further
variations in the use of system calls, a branch before the
FTP upload stage is added. The system could randomly skip
the FTP upload stage with a probability of 0.5. This affects
the number of occurrences of some network and file-related
system calls during actual execution. Hence, the application
has two legitimate flows that are denoted by “Flow 1” and
“Flow 2” as depicted in Figure 5.

B. Attack Examples

The following attack scenarios are introduced into the
application:

1) Attack 1: This attack code uploads the JPEG image that
the application has just compressed from the received

Highest  

Lowest 

90% 
80% 
70% 
60% 
50% 
40% 
30% 
20% 
10% 

5% 
1% 

Highest  Tr
ain

ing
 s

et
 

Te
st

 s
et

 

False positive

Missed detection

✓

Lowest 

Pr(~v|⇡)

Pr(~v|⇡)

Pr(~v|⇡)

Pr(~v|⇡)

Fig. 6. Threshold, false positive, and missed detection.

raw image to a separate FTP server. This attack uses
the same functions used by the legitimate FTP uploads
and requires some file and network-related system calls.

2) Attack 2: In this scenario, the attack code steals user
authentication information that is used to connect to the
FTP server and posts it to a separate HTTP server. This
attack invokes the same HTTP logging calls used by the
legitimate execution instance (network-related syscalls).

3) Attack 3: This attack modifies the array that contains
the raw image received from the webcam. The attack
erases the array by calling memset. This attack does
not require any system calls.

Attack 1 and Attack 2 are inserted on the both flows as marked
in Figure 5. Attack 3 is executed before the JPEG compression
stage. Note, again, that Flow 2 is launched with a probability
of 0.5. If enabled, the attack code executes at the marked place.

C. Evaluation

To obtain the training set, the application was executed 2000
times without any attack code activation. The target application
used 20 types of system calls. Among them 15 types had
non-zero variance in the training set (Figure 5 shows some
of the types). Thus, the feature set is the 15-dimension system
call frequency distributions. Then, the training set (and the
test sets) is z-normalized using the means and the standard
deviations of the training set. Three test sets (300 tokens each)
were obtained by enabling each of the three attack types.
Thus, each test set purely consists of abnormal tokens. The
evaluation in the following is done by testing how many of
the abnormal tokens could be detected. Each of the results
is the average of 20 runs (because of the randomness in the
Contrastive Divergence algorithm).

The bottleneck stacked autoencoder with two hidden layers
is trained as explained in the previous section. Then, the
probability of each training token was calculated by (11). This
is to find different settings of the threshold θ. That is, by



0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

False Positive Rate

M
is

s
e

d
 D

e
te

c
ti
o

n
 R

a
te

 

 

Attack 1

Attack 2

Attack 3

Fig. 7. Detection Error Tradeoff (DET) graph for 50 and 5 units in the first
and the second layers, respectively.

setting θ = kth percentile of {Pr(~v(n)|π)|n = 1, . . . , N},
we can control the false positive rate and then calculate the
missed detection rate according to the chosen false positive
rate. As shown in Figure 6, total 13 different threshold values
were used. This includes the minimum, the maximum, and
kth percentile for k = 1, 5, 10, 20, . . . , 90 of Pr(~v(n)|π) in
the training set. Intuitively, as the threshold increases, the
false positive rate also increases while the missed detection
rate decreases. Ideally, the parameter set π should be trained
properly so that the probabilities of the training set (the left
box in the figure, which purely consists of normal data) and
those of the test set (the right box, which purely consists of
abnormal data) can be separated by a proper value of θ as
clearly as possible.

Figure 7 shows an example result for the three attack
scenarios tested by a network of 50 and 5 hidden units in the
first and the second hidden layers, respectively. The plot is
the Detection Error Tradeoff (DET) graph, which shows how
well we could detect the abnormal behavior for a fixed false
positive rate or vice versa. Each marker corresponds to each
threshold setting. The threshold increases left to right. A good
anomaly detector makes DET curves to be as close as possible
to the origin (no false alarm and no missed detection). As can
be seen from the result, our bottleneck stacked autoencoder
method detected most of the attacks made by the scenario 2
and 3 without compromising the false positive rate. This was
because the changes in system call frequency distribution due
to their malicious activities were visible enough:

- Attack 2 (HTTP post): Because of the additional HTTP
request by the attack code, socket, connect, close and
stat were called more in both Flows 1 and 2; this resulted in
very low probability of the test tokens, thus flagging malicious
activities.

- Attack 3 (Image impairment): This attack does not use any
system calls; it just changes the values in the data. However,
this affected executions that follow, especially ones that de-

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

False Positive Rate

M
is

s
e
d
 D

e
te

c
ti
o
n
 R

a
te

 

 

Autoencoder (50,5)

GMM (K = 2)

GMM (K = 3)

GMM (K = 4)

GMM (K = 5)

GMM (K = 10)

Fig. 8. Bottleneck Stacked Autoencoder vs. Gaussian Mixture Model.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0.1

0.2

0.3

False Positive Rate

M
is

s
e
d
 D

e
te

c
ti
o
n
 R

a
te

 

 

Autoencoder (50,5)

GMM (K = 2)

GMM (K = 3)

GMM (K = 4)

GMM (K = 5)

GMM (K = 10)

Fig. 9. Magnified view of Figure 8.

pends on the data; the raw image and the JPEG compression.
The memset filled the array with 0’s and resulted in 15 KB of
black image. Such image sizes were not typical during normal
executions. Hence, calls to read and write were much less
frequent as compared to the normal executions (where these
calls were used often to write the larger images to files or
upload on FTP servers).

However, the performance of our detection method for
attack type 1 was low compared to the two attack scenarios.
The attack executed on Flow 1 was easily caught because it
changes some network related system calls (as in the HTTP
post attack), which is enough to make the distribution of the
system call frequencies to fall outside the legitimate regions.
On the other hand, if the attack is launched on Flow 2,
it was not easy to catch it since the attack uses the same
functions that are invoked by legitimate code. Thus, it looks
like the application is following Flow 1 where the FTP
upload is actually legitimate. This resulted in some missed
detections. Nevertheless, in terms of the absolute performance,
the proposed approach seems effective in detecting malicious
codes; as an example, it detected around 75% of the attack
instances (of type 1) while making around 5% of false alarms.
In the rest of the evaluation, only the result of attack 1 will
be used since the other two’s result do not look interesting.

Next, the proposed approach is compared with the Gaussian
Mixture Model, which is one of the common methods for
unsupervised/semi-supervised anomaly detection. The GMM



0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

False Positive Rate

M
is

s
e
d
 D

e
te

c
ti
o
n
 R

a
te

 

 

R=0.1

R=0.2

R=0.3

R=0.5

R=1.0

R=2.0

R=3.0

R=5.0

R=10.0

Fig. 10. GMM (K = 3) with different regularization numbers.

training with the given training set had a problem of singularity
of the covariance matrix during the EM process, thus a
regularization number r = 0.1 was used to add rI to the
covariances matrices. Figure 8 shows the results of GMM
with different number of components, k = 2, 3, 4, 5, 10 and
that of the proposed method. As can be seen from the DET
curves of GMM, the performance do not change significantly
with varying number of components (except for K = 2).
Apparently, 2 components could not capture well the clusters
of normal system call frequency distributions. The result indi-
cates that 3 components are enough to capture the distinctive
execution contexts and adding more component do not neces-
sarily improve the accuracy in this particular problem. Now,
if we compare the stacked autoencoder approach with GMMs
(magnified in Figure 9), we can see that their performances
do not significantly differ: for the low false positive rates
(≤ 0.3), it is even slightly better than GMM. This similarity
between our autoencoder model and the GMM comes from
the former’s hidden layer structure – Gaussian units in the first
hidden layer and binary units in the second hidden layer - as
explained in the previous section. As a side result (Figure 10),
the GMM performed better with smaller regularization number
as expected. With r smaller than 0.1, however, the singularity
of the covariance matrices could not be resolved.

Now, one interesting question could be how the number
of hidden units would affect the performance. Intuitively, we
should expect to see a better performance with more hidden
units because of the increased expressiveness. However, this
was not the case in the considered problem as Figure 11 and 12
show. There were no significant improvement with more units
in the first layer or second layer. This is possibly because our
problem is already simple enough and thus could be modeled
well with a small number of hidden units. The impact of
hidden unit count could be more visible if the method was
applied to a more complex problem.

Lastly, Figure 13 shows the results of the stacked au-
toencoder with binary units in the first hidden layer.3 If we

3The training of the first RBM in this model is now same with that of the
second RBM in the original model.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

False Positive Rate

M
is

s
e
d
 D

e
te

c
ti
o

n
 R

a
te

 

 

Autoencoder (15,5)

Autoencoder (30,5)

Autoencoder (50,5)

Autoencoder (100,5)

Autoencoder (300,5)

Fig. 11. First layer: [15,30,50,100,300] units, Second layer: 5 units.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

False Positive Rate

M
is

s
e
d
 D

e
te

c
ti
o
n
 R

a
te

 

 

Autoencoder (50,2)

Autoencoder (50,5)

Autoencoder (50,10)

Autoencoder (50,30)

Fig. 12. First layer: 50 units, Second layer: [2,5,10,30] units.

compare it with Figure 11, the original model (Gaussian-
Binary hidden layers) subtantially outperforms this binary-
binary model. This is because the Gaussian hidden layer is
much more expressive than the binary layer. The binary-
binary hidden layers cannot capture/allow valid noise in the
input and thus often determine even some valid variations as
abnormal. This, as the DET curves show, results in very poor
performance. In some cases, it was even worse than random
guess (y = x line).

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

False Positive Rate

M
is

s
e
d
 D

e
te

c
ti
o
n
 R

a
te

 

 

Autoencoder (15,5)

Autoencoder (30,5)

Autoencoder (50,5)

Autoencoder (100,5)

Autoencoder (300,5)

Fig. 13. The result of binary-binary hidden layers. First layer:
[15,30,50,100,300] units, Second layer: 5 units.



IV. CONCLUSION

In this project, the bottleneck stacked autoencoder, a deep
learning method, was applied to an anomaly (malicious code
execution) detection problem. The evaluation results based on
an example application showed its effectiveness in terms of the
accuracy which is comparable to Gaussian Mixture Model. An
interesting direction would be an application of the proposed
approach to other types of program behaviors, for example,
memory usage pattern,4 which would be much more high-
dimensional and complex enough to show the impacts of
various configurations of the network on the performance.

REFERENCES

[1] M. Abadi, M. Budiu, U. Erlingsson, and J. Ligatti. Control-flow integrity
principles, implementations, and applications. ACM Trans. Inf. Syst.
Secur., 13(1):4:1–4:40, Nov. 2009.

[2] Y. Bengio, P. Lamblin, D. Popovici, H. Larochelle, U. D. Montral, and
M. Qubec. Greedy layer-wise training of deep networks. In Advances
in Neural Information Processing Systems, pages 153–160, 2007.

[3] V. Chandola, A. Banerjee, and V. Kumar. Anomaly detection: A survey.
ACM Comput. Surv., 41(3):15:1–15:58, July 2009.

[4] D. E. Denning. An intrusion-detection model. IEEE Trans. Softw. Eng.,
13(2):222–232, Feb. 1987.

[5] S. Forrest, S. A. Hofmeyr, A. Somayaji, and T. A. Longstaff. A sense
of self for unix processes. In Proceedings of the 1996 IEEE Symposium
on Security and Privacy, pages 120–128, 1996.

[6] M. Handley, V. Paxson, and C. Kreibich. Network intrusion detection:
evasion, traffic normalization, and end-to-end protocol semantics. In
Proceedings of the 10th conference on USENIX Security Symposium -
Volume 10, 2001.

[7] G. Hinton. A Practical Guide to Training Restricted Boltzmann Ma-
chines. 2012.

[8] G. Hinton and R. Salakhutdinov. Reducing the dimensionality of data
with neural networks. Science, 313(45786):504–507, 2006.

[9] G. E. Hinton. Training products of experts by minimizing contrastive
divergence. Neural Comput., 14(8):1771–1800, Aug. 2002.

[10] S. Lloyd. Least squares quantization in PCM. IEEE Transactions on
Information Theory, 28(2):129–137, Mar. 1982.

[11] S. Ravi, A. Raghunathan, P. Kocher, and S. Hattangady. Security in
embedded systems: Design challenges. ACM Trans. Embed. Comput.
Syst., 3(3):461–491, Aug. 2004.

[12] R. Sommer and V. Paxson. Outside the closed world: On using
machine learning for network intrusion detection. In Proc. of the IEEE
Symposium on Security and Privacy, pages 305–316, 2010.

[13] C. Warrender, S. Forrest, and B. Pearlmutter. Detecting intrusion using
system calls: alternative data models. In Proceedings of the IEEE
Symposium on Security and Privacy, 1999.

[14] M.-K. Yoon, S. Mohan, J. Choi, J.-E. Kim, and L. Sha. SecureCore: A
multicore-based intrusion detection architecture for real-time embedded
systems. In IEEE Real-Time Embedded Technology and Applications
Symposium, pages 21–31, 2013.

4A snapshot of the memory usage would look like a heat map whose size
can be easily over several hundreds of thousand real values.


