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Instructor: Mark Hasegawa-Johnson (jhasegaw@illinois.edu)
TA: Sujeeth Bharadwaj (sbhara3@illinois.edu)
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1 Introduction

Pattern recognition broadly refers to all disciplines (and sub-disciplines) that learn/make predictions
from examples. It is best described using the language of probability and statistics, and that is the
topic of Week 1. Given some observations of a random variable (or process) X, the idea is to predict
another random variable (process), Y . Within a statistical framework, the goal then is to estimate
p(Y |X) or the more general p(X,Y ) based on model assumptions and whatever data is available.
The problem of estimating p(Y |X) or p(X,Y ) from data is referred to as learning/training the
parameters, classi�er, etc. The problem of �nding the best Y from a given model and a new sample
x is called inference. Machine learning problems are classi�ed based on the nature of X, Y , and
what is available at training and inference.

1.1 Classi�cation

Any problem for which the label Y is known to be discrete is a classi�cation problem. Classi�cation
of handwritten digits, image recognition, spam detection are all examples of classi�cation (If you
have taken ECE 561, classi�cation is analogous to detection). When a set of examples along with
labels {(xi, yi)} is available for training, we have a supervised classi�cation problem; if Y is not
available (at training), we have an unsupervised classi�cation problem. We will also discuss
mixed scenarios such as semi-supervised and unsupervised pretraining.

1.2 Regression

When Y is continuous, we have to estimate (estimation in ECE 561) its value and these problems
are referred to as regression. Predicting the weather (a continuous value) from the time of the day
and geographical location, problems in economics (assets, derivatives, etc.) are all good examples
of regression.

1.3 Density estimation

In some cases, we only have X available at training, and cannot make any assumptions on Y
(whether it's discrete, continuous, or if it even exists). We can only try to estimate p(X), the



underlying distribution. Density estimation is therefore in some sense the continuous extension of
unsupervised classi�cation/clustering. In the most general setting, no assumptions on p(X) are
made and we estimate p(X) directly from the data. We refer to such settings as non-parametric
(no parameters to estimate).

2 Probability and statistics

In this section, we describe the key ingredients of statistical decision theory. As discussed earlier, let
X be an observable random variable, Y , the variable we intend to predict (the label), and f(X) be
the prediction for Y . Naturally, we want to test the goodness of some prediction f(X) against the
true value, Y . We denote this by L(Y, f(X)), a loss function that measures how close the prediction
is to the ground-truth label. Given some training data � pairs of (x, y), it is intuitive to minimize
the average loss. We call this the risk and denote it by

R(f) = E[L(Y, f(X))] =

∫
L(Y, f(X))p(dx, dy) (1)

where p(x, y) is the joint density function of X and Y , and p(dx, dy) is shorthand for: p(x, y)dxdy
if they are both continuous, and a summation if they are both discrete. Bayes rule, fB(X) is the
predictor that minimizes R(f). That is,

fB = argmin
f
R(f) (2)

2.1 Why is it called Bayes rule and how do we �nd it?

We can rewrite R(f) as an expectation of conditional expectations:

R(f) = EXY [L(Y, f(X)] = EXEY |X=x[L(f(X), Y )] (3)

Given a particular x, the optimal predictor fB(x) is one that minimizes the conditional (aka poste-
rior) risk EY |X=x[L(f(X), Y )]. The strategy for �nding Bayes optimal predictor, fB(x) is therefore
to:
1) Compute the posterior distribution, pY |X(y|x) using Bayes rule
2) Compute the posterior risk EY |X [L(f(X), Y )] =

∫
L(f(x), y)p(y|x)dy.

3) For each x, fB(x) is that which minimizes the posterior risk

2.2 Least squares is a popular loss function (for regression)

Least squares: L(y, f(x)) = ‖y−f(x)‖22 (MMSE, most regression problems, etc.). In this case, we
have that the posterior risk is C(a|x) =

∫
pY |X(y|x)(a− y)2dy. The �rst order necessary condition

for a minimum is that the derivative of the cost function we wish to minimize (C(a|x) in this case)
is 0:

0 =
dC(a|y)
da

=

∫
pY |X(y|x)(a− y)dy = a

∫
pY |X(y|x)dy −

∫
pY |X(y|x)ydy (4)

. Hence, the optimal estimate fB(x) =
∫
pY |X(y|x)ydy = EY |X=x[Y ] is the conditional mean.

Homework/Exercise: Show that when the error is the l1 norm: L(y, f(x)) = |y − f(x)|, the
conditional median estimator is the Bayes estimate.



Linear regression: A special case is when we know structure, for example, that the estimator
is linear: f(x) = xTβ. Plugging this into the loss function results in

L(y, f(x)) = ‖y − xTβ‖22 = (y − xTβ)T (y − xTβ) (5)

We di�erentiate with respect to β and set it to 0 (we wish to minimize the loss function) and obtain

β = (xTx)−1xT y (6)

Polynomial regression: Suppose we want to estimate a sinusoid from 11 sample points, linear
regression alone is not su�cient [Bishop example]. A cube is a much better �t, but an 11th degree
polynomial "over�ts". We will discuss the concept of generalization in later lectures. Note: poly-
nomial regression is also "linear" in nature � all we need to do is "expand" the variables so that the
problem is linear. It is the same optimization problem, just over a di�erent set of variables, and a
di�erent matrix needs to be inverted.

Homework/Exercise: Relate this to Bayes error and derive conditions under which a linear
predictor is Bayes optimal � what has to be true about the distributions of X and Y?

2.3 Minimum probability of error is also popular (for classi�cation)

It does not always make sense to simply consider the squared loss, especially for classi�cation.
Suppose we have C classes, yε {0, 1, ..., C − 1}. The most intuitive loss function is one that directly
measures classi�cation error: we assign a cost of 1 whenever f(x) 6= y and 0 otherwise. That is, we
pay a �xed price whenever we are wrong. We derive the Bayes optimal rule under this loss. Since
Y is now discrete (a classi�cation problem), we are working with summations, not integrals. The
posterior risk, EY |X [L(f(x), Y )] simpli�es to:

EY |X [L(f(x), Y )] =
C−1∑
y=0

L(y, f(x))pY |X(y|x) (7)

and for the Bayes optimal rule, we minimize the risk:

fB(x) = argmin
a

C−1∑
y=0

L(y, a)pY |X(y|x) = argmin
a

C−1∑
y=0

1{y 6= a}pY |X(y|x) (8)

We can rewrite this sum as
∑C−1

y=0 pY |X(y|x)− pY |X(a|x) = 1− pY |X(a|x). Hence,

fB(x) = argmin
a

1− pY |X(a|x) = argmax
a

pY |X(a|x) (9)

This is known as the maximum a posteriori (MAP) estimate since this is equiavelent to maximiz-
ing pX|Y (x|y)p(y) and not pX|Y (x|y) as is typically done in the maximum likelihood (ML) setting.
Note: When the prior is uniform (we have no reason to favor one label over the other), the MAP
estimate is the same as the ML estimate

Homework/Exercise: This proof is much simpler (in fact, straight from de�nition) if you can
show that E[1{y = f(x)}] = P [y = f(x)], where 1 is the indicator function that returns 1 when



the event expressed in its argument occurs and 0 otherwise; and P [.] denotes the probability of
the event expressed in the argument. Show that E[1{y = f(x)}] = P [y = f(x)] and using this
simpli�cation, prove that the Bayes optimal under the 0-1 loss is the MAP estimate.

Let us consider a simpler setting, in which we only have two classes; i.e., yε{0, 1}. In some ap-
plications (for example, detection of earthquake), it is not su�cient to simply assign a cost of 1 for
every mistake. We de�ne two sub-notions of error: missed detection and false alarm. Let 1 denote
an earthquake.

false alarm: There is no earthquake, but we incorrectly hypothesize that there is.
missed detection: There is an earthquake, but we miss detecting it and hypothesize that there
isn't
Clearly, it is much more disastrous to overlook the occurence of earthquake than it is to incorrectly
suggest that there is one.

Homework/Exercise: Think of an application in which a false alarm is worse than a missed
detection. Make some assumptions (about the pdfs, pmfs, etc.) to solve it for a particular scenario;
compute the Bayes risk under the 0-1 loss. How would it be di�erent for a general loss function
parameterized by a and b, in which a is the cost of false alarm, and b is the cost of missed detection.


