
UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN
Department of Electrical and Computer Engineering

ECE 544NA Pattern Recognition

Solutions 7
Fall 2013

Assigned: Thursday, October 31, 2013 Due: Thursday, November 14, 2013

Reading: NNPR Chapter 8, links posted on the class website

Problem 7.1

A kernel k(x, y) is called a Mercer kernel if it satisfies the Mercer conditions: 1) k(x, y) is symmetric, 2)
continuous, and 3) positive semi-definite. For each of the following, we show 3) since 1) and 2) are obvious.

(a) If k1(x, y) is a Mercer kernel, by Mercer’s theorem k1(x, y) =
∑∞

i=1 λ
(1)
i φ

(1)
i (x)φ

(1)
i (y) and likewise

k2(x, y) =
∑∞

i=1 λ
(2)
i φ

(2)
i (x)φ

(2)
i (y). To show that k(x, y) = k1(x, y)k2(x, y) is positive definite, we need

to show ∫ ∫
f(x)f(y)k1(x, y)k2(x, y)dxdy ≥ 0

∀f . By Mercer’s theorem, the LHS is equivalent to

∫ ∫
f(x)f(y)

(∞∑
i=1

λ
(1)
i φ

(1)
i (x)φ

(1)
i (y)

) ∞∑
j=1

λ
(2)
j φ

(2)
j (x)φ

(2)
j (y)

 dxdy

Assuming continuity of k1(x, y), k2(x, y) and uniform convergence of the sums (Mercer’s theorem), we
can swap the order of the sums and integrals:

∞∑
i=1

∞∑
j=1

λ
(1)
i λ

(2)
j

∫ ∫
[φ

(1)
i (x)φ

(2)
j (x)f(x)][φ

(1)
i (y)φ

(2)
j (y)f(y)]dxdy

=

∞∑
i=1

∞∑
j=1

λ
(1)
i λ

(2)
j

[∫
φ
(1)
i (x)φ

(2)
j (x)f(x)dx

]2
≥ 0

Hence, if k1(x, y) and k2(x, y) are Mercer kernels, then k(x, y) = k1(x, y)k2(x, y) is also a Mercer

kernel. The expression above also provides insight into the underlying feature map for k(x, y): ~φ(x) =

{φ(1)i (x)φ
(2)
j (x)}∀i∀j – it is the componentwise product of the eigenfunctions of k1 and k2.

(b) Another approach to proving that a given function is a Mercer kernel is to simply show that there exists
some space in which the kernel is an inner product. We therefore prove this result by constructing
such a kernel. Let k1(x, y) = 〈φ(1)(x), φ(1)(y)〉 and k2(x, y) = 〈φ(2)(x), φ(2)(y)〉. We want to show that
k(x, y) = ak1(x, y) + bk2(x, y) for a, b ≥ 0 is a Mercer kernel if k1(x, y) and k2(x, y) are Mercer kernels.
Let us construct φ(x) = [

√
aφ(1)

√
bφ(2)(x)]. Clearly then k(x, y) = 〈φ(x), φ(y)〉 = a〈φ(1)(x), φ(1)(y)〉+

b〈φ(2)(x), φ(2)(y)〉 = ak1(x, y) + bk2(x, y) is also a Mercer kernel.

(c) k(x, y) = (xT y + c)d. A constant c ≥ 0 is trivially positive semi-definite; xT y is the inner product in
some n-dimensional euclidean space Rn and hence xT y is a Mercer kernel. From (b), we know that
the sum of two kernels is a (Mercer) kernel, and therefore (xT y + c) is also a Mercer kernel. Since
(xT y + c)d is (xT y + c) multiplied d times, it follows from (a) that (xT y + c)d is a Mercer kernel.

Solutions 7 2

(d) The expression
∑

x,y f(x)f(y)k(x, y) ≥ 0 for any nonzero sequence f(x), x = 1, 2, ..., 100 is equivalent
to showing that the matrix K constructed by {Kij = min(i, j)}i,j=1,...,100 is positive semi-definite.

K =


1 1 1 · · · 1
1 2 2 · · · 2
...

...
...

. . .
...

1 2 3 · · · 100


Let us define O(0) to be 100 by 100 matrix of all ones, which is trivially rank one and positive semi-
definite; let us further define O(i) to be O(0), but with every row and column vectors, 1 ≤ j ≤ i, set to
0. Since O(0) is rank one and positive semi-definite, O(i) is also rank one and positive semi-definite for
1 ≤ i ≤ 99. We display O(1), and O(2) below:

O(1) =


0 0 0 · · · 0
0 1 1 · · · 1
0 1 1 · · · 1
...

...
...

. . .
...

0 1 1 · · · 1

 O(2) =


0 0 0 · · · 0
0 0 0 · · · 0
0 0 1 · · · 1
...

...
...

. . .
...

0 0 1 · · · 1


It can be observed that K =

∑100
i=1O

(i−1) and since O(i) is positive semi-definite for each i, K is
positive semi-definite. Hence k = min(x, y) is positive semi-definite.

This is called the histogram intersection kernel and a much simpler proof exists (Barla, Odoni, Verri,
2003) where we can define a mapping φ(x) ε RN such that φi(x) = 1 for 1 ≤ i ≤ x and 0 otherwise.
Then, φ(x)Tφ(y) = min(x, y) = k(x, y).

Matlab Exercises

Problem 7.2

Table 1 presents the average classification error of a linear least squares classifier on the full dataset,
PCA, kernel PCA with a Gaussian kernel, and a restricted Boltzmann machine (RBM). It is expected that
with only two dimensions, the three dimensionality reduction techniques are much worse than when the
full dataset is used. Of these, kernel PCA has a slight advantage (but not much) and note that RBM
and PCA return exactly the same results. Also note that these results are quite competitive – with only
two dimensions, they outperform k-nearest neighbors and the perceptron algorithm trained on the original
feature space. Table 2 summarizes the advantages and disadvantages of the three techniques.

Table 1: Average classification error across 100 random trials
classifier average error standard deviation
full data 0.23 0.03

PCA 0.29 0.03
kernel PCA 0.28 0.03

RBM 0.29 0.03

Solutions 7 3

Table 2: Advantages and disadvantages of the three dimensionality reduction techniques
method advantages disadvantages

PCA Simple, gauranteed to be optimal Eigenvalue decomposition
no additional parameters to tune (can can be cumbersome in high dimensions)

kernel PCA Recovers underlying nonlinearities Computing kernels is costly
Guaranteed to be optimal needs entire training set at test time

infinite choice of kernels and parameters
RBM Fast approximation to PCA gradient descent

(sensitive to initialization, local optima)

function results = runexps(numtrials)

%runexps(numtrials) runs numtrials independent experiments for this

%problem set

%results contains results for 1) full dataset, 2) PCA, 3) kernel PCA

%and 4) RBM

results = zeros(4, numtrials);

load diabetes_normalized.mat

diab_labels = diabetes_normalized(:,1);

diab_features = diabetes_normalized(:,2:9);

numsamples = length(diab_labels);

numtrain = ceil(numsamples*0.8);

numtest = numsamples - numtrain;

numeigs = 2;

for i = 1:numtrials

randinds = randperm(numsamples); %random partitioning of the entire dataset

traininds = randinds(1:numtrain); %first 80% is training data

testinds = randinds(numtrain + 1: numsamples); %next 20% is test data

mytraindata = diab_features(traininds,:);

mytraindatabias = [mytraindata ones(numtrain, 1)]; %include the bias term

mytestdata = diab_features(testinds, :);

mytestdatabias = [mytestdata ones(numtest, 1)];

y_train = diab_labels(traininds);

y_test = diab_labels(testinds);

%Standard linear classifier

w_full = (mytraindatabias’*mytraindatabias) \ (mytraindatabias’*y_train);

y_full = 2.*(mytestdatabias*w_full >= 0) - 1;

results(1, i) = sum(y_full ~= y_test)/length(y_test);

%% Principal components analysis

estmean = mean(mytraindata, 1); %mean center

meancentered = mytraindata - repmat(estmean, numtrain, 1);

corrmat = meancentered’*meancentered; %8 x 8 correlation matrix

[eigvecs, ~] = eigs(corrmat, numeigs); %picks the two largest eigenvals

Solutions 7 4

pcafeats = meancentered*eigvecs;

%train classifier

pcabias = [pcafeats ones(numtrain, 1)]; %should not be necessary

w_pca = (pcabias’*pcabias) \ (pcabias’*y_train);

%apply the transformation to the test set

testmeancentered = mytestdata - repmat(estmean, numtest, 1);

pcafeats_test = testmeancentered*eigvecs;

testpca = [pcafeats_test ones(numtest, 1)];

y_pca = 2.*(testpca*w_pca >= 0) - 1;

results(2,i) = sum(y_pca ~= y_test)/length(y_test);

%% Kernel PCA

%Compute the kernel matrix (note that this can also be vectorized with

%some restrictions on ||x||, but our dataset is small enough

%learning gamma requires a grid search, it controls the "influence" a

%particular datapoint has. Since the data is somewhat normalized, we

%arbitrarily select gamma = 1/2 [since 2 is the maximum distance

%between any two points]

gamma = 0.5;

K = zeros(numtrain, numtrain);

for j = 1:numtrain

for k = 1:numtrain

K(j,k) = exp(-norm(mytraindata(j,:) - mytraindata(k,:))*gamma);

end

end

%Mean center K

kappa = sum(K, 2)./numtrain;

kconst = sum(sum(K))/numtrain^2;

trainones = ones(numtrain, 1);

K_centered = K - trainones*kappa’ - kappa*trainones’ + kconst.*trainones*trainones’;

%Find the top 2 eigenvalues (eigs is better here)

[alphas, ~] = eigs(K_centered, numeigs);

%find lower dimensional representation

lowdimtrain = K_centered*alphas;

lowdimtrainbias = [lowdimtrain ones(numtrain, 1)];

%train a classifier

w_kpca = (lowdimtrainbias’*lowdimtrainbias) \ (lowdimtrainbias’*y_train);

%compute test kernels and mean center them

K_test = zeros(numtest, numtrain);

for n = 1:numtest

for m = 1:numtrain

K_test(n,m) = exp(-gamma*norm(mytraindata(m,:)-mytestdata(n,:)));

end

Solutions 7 5

end

kappatest = sum(K_test, 2);

testones = ones(numtest, 1);

Ktestcent = K_test - testones*kappa’ - kappatest*trainones’ + kconst.*testones*trainones’;

lowdimtest = Ktestcent*alphas; %2 -dimensional representation

lowdimtestbias = [lowdimtest ones(numtest, 1)];

%test the classifier

y_kpca = 2.*(lowdimtestbias*w_kpca >= 0) - 1;

results(3,i) = sum(y_kpca ~= y_test)/length(y_test);

%% Restricted Boltzmann Machine

rbmmap = myrbm(meancentered, numeigs, 10^(-7));

rbmproj = meancentered*rbmmap;

rbmbias = [rbmproj ones(numtrain, 1)];

%learn a linear classifier

w_rbm = (rbmbias’*rbmbias) \ (rbmbias’*y_train);

%project test data

rbmtest = testmeancentered*rbmmap;

rbmtestbias = [rbmtest ones(numtest, 1)];

%classify

y_rbm = 2.*(rbmtestbias*w_rbm >= 0) - 1;

results(4,i) = sum(y_rbm ~= y_test)/length(y_test);

end

function [W, c] = myrbm(traindata, dim, thresh)

%W = myrbm(traindata, dim, thresh) reduces the dimension of traindata to

%dim dimensions using a restricted boltzmann machine (RBM) with Gaussian

%nodes. The stopping criterion is determined by thresh.

[numtrain, numfeats] = size(traindata); %get the size of the training data

W = zeros(numfeats, dim);

b = zeros(1, numfeats);

c = zeros(1, dim);

eta = 0.001;

%Set the initial variance

sigma = max(diag(traindata’*traindata)./numtrain);

trainones = zeros(numtrain, 1);

%Note that this is done in batch mode. When numfeats is really large

%estimating h, v as well as the gradient update is more efficient in

Solutions 7 6

%an online setting

%when the variance of the Gaussian is really small, then it’s like an

%impulse

while sigma >= thresh

%generate h

h = normrnd(traindata*W + trainones*c, sigma);

%approximation error

h_err = traindata*W + trainones*c - h;

v_err = h*W’ + trainones*b - traindata;

%Gradient updates

W = W - eta*(traindata’*h_err + v_err’*h);

b = b - eta*sum(v_err, 1);

c = c - eta*sum(h_err, 1);

%update sigma

sigma = sigma*0.99;

%For a Gaussian, we could alternatively adapt eta as a function of

%iteration

end

end

