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Problem 6.1

The Bayes rule for some loss L(y, f(x)) is said to be f(x) that minimizes the expected loss:

fB(x) = arg min
f(x)

EX,Y [L(y, f(x)]

We saw in class that when L(y, f(x)) = |f(x)− y|2, fB(x) = E[Y |X], the conditional mean. We show that
the optimal rule for L(y, f(x)) = |f(x)− y| is the conditional median:

fB(x) = arg min
f(x)

∫
P (y|x)|f(x)− y|dy

= arg min
f(x)

[∫ f(x)

−∞
P (y|x)(f(x)− y)dy +

∫ ∞
f(x)

P (y|x)(y − f(x))dy

]
Setting the derivative (w.r.t. f(x)) of this expression to 0 yields:∫ f(x)

−∞
P (y|x)dy =

∫ ∞
f(x)

P (y|x)dy

Since there is exactly as much density to the left of f(x) as there is to its right, f(x) (by definition) is the
median. Hence, fB(x) = median(P (Y |X = x)).

Problem 6.2

Given K mixtures and a dataset with N examples, the E-M algorithm for a GMM computes

γij =
πjN (xi|µj ,Σj)∑
j′ πj′N (xi|µj′ ,Σj′)

If we further assume that the covariances are diagonal, that is Σj′ = εI ∀j′, we have

γij =
πje
−
‖xi−µj‖

2
2

ε∑
j′ πj′e

−
‖xi−µj′ ‖

2
2

ε

We are interested in the setting ε→ 0. For convenience, let us rewrite γij as

γij =
πj∑

j′ πj′e
−‖xi−µj′ ‖

2
2+‖xi−µj‖2

ε
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Figure 6.3-1: Training set classification error as a function of the number of iterations

It is clear that if ‖xi−µj‖22 > ‖xi−µj′‖22 for any j′, e
−‖xi−µj′ ‖

2
2+‖xi−µj‖

2

ε →∞ and hence γij → 0. It is only
when ‖xi−µj‖22 ≤ ‖xi−µj′‖22 ∀j′; that is, when j = arg minj′ ‖xi − µj′‖22, that γij → 1. Hence, in the limit
as ε→ 0,

γij =

{
1 if j = arg minj′ ‖xi − µj′‖22
0 otherwise

The update equations for µj and γij are therefore identical to the k-means algorithm in the limit as ε → 0
of a GMM in which the covariances are εI.

Matlab Exercises

Problem 6.3

Figure 6.3-1 reports the training set classification error as a function of the number of iterations for
a random partitioning of the diabetes dataset. It is clear that both second order methods – Newton and
Levenberg-Marqadt (LM) approximation – converge a lot faster than gradient descent. The biggest disad-
vantage with Newton’s method is computing the inverse of the Hessian, which can be singular or close to
singular. Many heuristics such as first finding a good initial point using gradient descent, regularization of
the Hessian, etc. were used (see code). The LM approximation (coupled with the matrix inversion lemma),
however, can directly estimate a non-singular and consistent inverse Hessian.

Table 1: Average classification error across 100 random trials
classifier average error standard deviation

gradient descent 0.24 0.03
Newton’s method 0.26 0.08
LM approximation 0.23 0.03
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Table 1 reports the average classification error across 100 trials. It is clear that LM approximation is at
least as good as the other two methods both in terms of performance and consistency. It is computationally
inefficient as implemented in this problem set; a much more natural setting is online learning/stochastic
gradient descent in which we alternate between updating the weight parameters w and the inverse Hessian
alternatively, one sample at a time. The Levenberg Marqadt approximation is therefore a good approach
for any optimization problem wherein we want to harness the faster convergence properties of second-order
methods (e.g. Newton) without their irregularities.

function [w, trainerror] = newtdesc(traindata, trainlabels, eta, startw, numtrials)

%given the training data and labels, newtdesc computes the optimal weight

%vector for a linear classifier y = w’x + b with a tanh(.) non-linearity

%using Newton’s descent

w = startw; %initialize to something small

w = w./norm(w);

%Run a few stages of gradient descent

[w, graderr] = graddesc(traindata, trainlabels, 0.001, w, 5);

[~,numfeats] = size(traindata);

trainerror = zeros(numtrials, 1);

trainerror(1:5) = graderr;

for n = 6:numtrials

a = tanh(traindata*w);

y = 2.*(traindata*w >= 0) - 1; %classify training set

trainerror(n) = sum(y ~= trainlabels)/length(trainlabels);

%compute the gradient

grad = 2.*traindata’*((a - trainlabels) .* (1-a).^2);

H = traindata’*diag((1-a).^2 - 2.*(a - trainlabels).*(a .* (1-a).^2))*traindata;

%regularize

H = H + 0.0005.*eye(numfeats);

w = w - eta*(H\grad);

w = w./norm(w); %make sure w is not too large

end

function [w, trainerror] = lmdesc(traindata, trainlabels, eta, startw, numtrials)

%given the training data and labels, lmdesc computes the optimal weight

%vector for a linear classifier y = w’x + b with a tanh(.) non-linearity

%using the Levenberg Marqadt approximation

w = startw; %initialize to something small

w = w./norm(w);

%Run a few stages of gradient descent

[w, graderr] = graddesc(traindata, trainlabels, 0.001, w, 5);

[numtrain,numfeats] = size(traindata);

trainerror = zeros(numtrials, 1);

trainerror(1:5) = graderr;

for n = 6:numtrials

a = tanh(traindata*w);

y = 2.*(traindata*w >= 0) - 1; %classify training set
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trainerror(n) = sum(y ~= trainlabels)/length(trainlabels);

%LM approximation

G = bsxfun(@times, traindata, (a-trainlabels).*(1-a.^2));

grad = sum(G, 1)’;

%Matrix inversion lemma: note that if we were to do stochastic grad.

%descent, we would both 1) update Hinv and 2) update w for each sample

Hinv = 20.*eye(numfeats);

for i = 1:numtrain

b = Hinv*G(i,:)’;

Hinv = Hinv - (b*b’)/(1+b’*G(i,:)’);

end

w = w - eta*Hinv*grad;

w = w./norm(w); %make sure w is not too large

end


