UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN
Department of Electrical and Computer Engineering

ECE 544NA PATTERN RECOGNITION

Solutions 5
Fall 2013

Assigned: Tuesday, October 8, 2013 Due: Thursday, October 17, 2013

Reading: NNPR Chapter 4

Problem 5.1

Given a binary vector = (z1,...,xx), where z; € {0,1}, parity(x) is defined by

N
parity(z) = (Z z,) mod 2
i=1

That is, parity(z) = 1 if and only if the input vector x has an odd number of ones.

(a)

It is easy to see that parity(z) = (((z1 @ z2) B x3) @ ...xn) where & denotes the XOR. The XOR can
be implemented as a 2-layer neural network with 9 weights (some of which may be 0). This equivalent
definition of parity is sequential, and requires N — 1 XORs cascaded together. Hence, the depth of an
equivalent architecture is 2(N — 1) and the number of weights is 9(N — 1). That is, the depth is O(N)
and the number of weights is also O(N).

Any boolean function can be implemented as a sum-of-products (OR of ANDs) in two layers; one pos-
sible (although trivial) implementation is therefore a sum-of-products expansion of the parity function.
The number of weights depends on the number of AND gates used in our representation (since an
AND gate can be implemented in a 1-layer neural network with 3 weights). Clearly, the total number
of subsets of a set of length N is 2VV; of these, we are interested in the subsets of odd cardinality, which
is exactly half as many. Hence, the number of AND gates required is O(2V~!) and the number of
weights is equivalently O(2V1).

A tree-like structure in which parity(z) = (zp ® xr) where X and zr denote the left and right
children of a particular node, respectively. The leaves of the tree would consist of pairs of the input,
(x1®x2), ..., (tn—1 D). Such a tree would have depth log, N consisting of N —1 XOR gates. Hence,
the number of weights required is O(N) with a depth of O(log, N). We already see an improvement
over (a) since we now have a shallower architecture with the same number of weights.

We show that this can in fact be done in 2 layers. If we decompose the definition of parity into different
modules, we would first want to compute Zfil x; and then the mod function. We now describe a neural
network that computes the following statistic at each hidden node: m; = Zf\;l x; > j. For any j,
if m; is true, but m;,; is not, we know that Zf\il x; = j. To implement the mod function, it then
suffices to check if m; is true for any odd j. The hidden layer of the neural network is given by:
zj = Zfil x; —j+ 0.5, where j € {1,.., N}. After passing it through some non-linearity (e.g. tanh(.)),
we obtain exactly the statistic m;. Our decision is then based on y = Z;vzl (—1)7*1z;. We need
O(N?) weights to comppute z; for j = 0,1,..., N and O(N) weights to compute y. Therefore, a depth-
2 architecture can be implemented with just O(N?) weights. If the depth of the network is a constraint,
then we see a clear improvement over (b).

Solutions 5 2

()

By introducing an additional layer that computes the sum s = Zivzl x;, we can have an architecture
that computes the parity function in just 3 layers. In this case, the first layer, denoted by z(!)
contains only one node, z(1) = 5. The second layer computes the statistics m; described in (c) by

ZJ(-2) = s —j + 0.5. Again, parity is computed as in (c): y = Z;\Ll (—1)j+lz](-2). The first, second,
and third layers all require O(N) weights and biases, and we have a depth 3 architecture with O(N)

weights.

In most real settings, we want to learn a function from data, rather than specify it. We evaluate
these approaches based on two criteria: computational complexity and number of local optima. As
the number of hidden layers increases, the number of local optima increases expponentially (at least
trivially from weight-space symmetry). Deep architectures therefore increase the risk of getting stuck
in local optima. However, deeper representations are almost always more succinct — i.e., they require
fewer number of parameters to express complex relationships. We saw that (a), (c), and (e) all require
O(N) weights. Shallow architectures, on the other hand, require many more parameters — sometimes
exponentially many (b) — to represent the same function. Since the computational complexity directly
depends on the number of weights, shallow architectures are costlier to train (but they are more likely
to converge to good optima). A third criterion to consider is sensitivity to perturbations. That is,
how close do the learnt weights have to be to the true value? Such an analysis is difficult, but some
intuition is provided in Bengio & Lecun.

Under the assumption that N can be quite large, an algorithm for which the number of weights is
O(N) is essential. Our solution to (e) — a minimum depth architecture (3 layers) with O(N) weights
— therefore seems to be the best choice.

Solutions 5 3

Matlab Exercises
Problem 5.2

Figure 1 reports the average classification error on 100 random trials for the four methods from HW 4,
as well as a 3-layer network with h hidden nodes, h € {2,4,8,16}.

(b) Intuitively, the hidden layer computes a nonlinear representation of the data in a supervised fashion
(i.e. given the class labels). When h < 8, we are indeed reducing the dimensionality and computing a more
succinct representation. When h > 8, we are projecting onto a higher dimensional space, which can have the
effect of making the data more linearly separable. That h = 2 performed the best (and better than a single
layer with tanh(.)) indicates that the data is actually well represented in some lower-dimensional space.
As h increases, we see a gradual (although not significant) decrease in performance; hence the additional
representation power does not help, and may even hurt given that we only have limited data and many more
parameters to learn.

(¢) Although still worse, a network with & = 2 hidden nodes is closer to linear least squares. Extensive
tuning, better stopping criteria, and an adaptive n may improve the performance of these methods; but unless
the improvement is significant, the heuristic nature of training a neural network is a major disadvantage.
It is always good practice to therefore check how well linear classifiers perform on a particular dataset. In
many real world applications, however, we tend to have almost an infinite supply of training data and deeper
networks offer significant improvement. See the papers (posted online) on speech and vision applications.

Table 1: Average classification error across 100 random trials

classifier average error || standard deviation
least squares 0.23 0.03
1-nearest neighbor 0.29 0.03
tanh(.) nonlinearity 0.28 0.04
perceptron 0.35 0.08
h=2 0.26 0.04
h=4 0.27 0.05
h=8 0.27 0.05
h=16 0.28 0.05
function results = runexps(numtrials)

%runexps (numtrials) runs numtrials independent experiments for this
%problem set

%results contains results for 1) KNN, 2) least squares, 3) gradient descent
%with tanh(.) nonlinearity, and 4) the perceptron algorithm
results = zeros(8, numtrials);

load diabetes_normalized.mat

diab_labels = diabetes_normalized(:,1);

diab_features = diabetes_normalized(:,2:9);

numsamples = length(diab_labels);

numtrain = ceil(numsamples*0.8);

numtest = numsamples - numtrain;

for i = l:numtrials
randinds = randperm(numsamples); %random partitioning of the entire dataset

Solutions 5

traininds = randinds(l:numtrain); %first 80% is training data
testinds = randinds(numtrain + 1: numsamples); %next 20% is test data

mytraindata = diab_features(traininds,:);
mytraindatabias = [mytraindata ones(numtrain, 1)]; %include the bias term

mytestdata = diab_features(testinds, :);
mytestdatabias = [mytestdata ones(numtest, 1)];

y_train = diab_labels(traininds);

y_test = diab_labels(testinds);

%Linear classifier

%learn the classifier

w_linear = ((mytraindatabias’*mytraindatabias)) \ (mytraindatabias’*y_train);
%classify test points

y_linear = 2.*(mytestdatabias*w_linear >= 0) - 1;

%compare with true labels

results(1l,i) = sum(y_linear “= y_test)/length(y_test); %compute and record the error

%Knn classifier with k = 1
y_1nn = knn_classify(l, mytestdata, mytraindata, y_train);
results(2,i) = sum(y_1lnn “= y_test)/length(y_test);

%hgradient descent with tanh(.) activation function

w_tanh = graddesc(mytraindatabias, y_train, 0.001, 0.28);

y_tanh = 2.x(mytestdatabias*w_tanh >= 0) - 1;

%compare with true labels

results(3,i) = sum(y_tanh "= y_test)/length(y_test); Y%compute and record the error

%the perceptron algorithm (hinge loss)

w_perc = perceptron(mytraindatabias, y_train, 0.001, 0.28);

y_perc = 2.*(mytestdatabias*w_perc >= 0) - 1;

%compare with true labels

results(4,i) = sum(y_perc "= y_test)/length(y_test); Y%compute and record the error

%backprop with h = 2

[Wi, W2] = backprop(mytraindatabias, y_train, 0.01, 0.30, 2);
al mytestdatabias*Wi;

z1 = tanh(al);

z1 [ones (numtest, 1) z1];

a2 = zl1*W2;

y_backprop = 2.x(a2 >= 0) - 1;

%compare with true labels

results(5,i) = sum(y_backprop "= y_test)/length(y_test);

%backprop with h = 4

[Wi, W2] = backprop(mytraindatabias, y_train, 0.01, 0.30, 4);
al = mytestdatabias*Wi;

z1 = tanh(al);

z1 [ones(numtest, 1) z1];

a2 z1*W2;

Solutions 5

y_backprop = 2.*x(a2 >= 0) - 1;
%hcompare with true labels
results(6,i) = sum(y_backprop "= y_test)/length(y_test);

%backprop with h = 8

[Wi, W2] = backprop(mytraindatabias, y_train, 0.01, 0.30, 8);
al mytestdatabias*W1;

z1 = tanh(al);

z1 = [ones(numtest, 1) z1];

a2 = zl*xW2;

y_backprop = 2.*x(a2 >= 0) - 1;

%compare with true labels

results(7,i) = sum(y_backprop ~= y_test)/length(y_test);

%backprop with h = 16

[Wi, W2] = backprop(mytraindatabias, y_train, 0.01, 0.30, 16);
al mytestdatabias*Wi;

z1 = tanh(al);

z1 [ones (numtest, 1) z1];

a2 z1*W2;

y_backprop = 2.*x(a2 >= 0) - 1;

%compare with true labels

results(8,i) = sum(y_backprop "= y_test)/length(y_test);

end

The back-propagation algorithm:

function [W1, W2] = backprop(traindata, trainlabels, eta, threshold, h)
%Given the training data and labels, and a test dataset,

%backprop trains a 3-layer feedforward network with h hidden layers

%and tests it on testdata

[numsamples, numfeats] = size(traindata);

%initialize weights

W1l = randn(numfeats, h);

W2 = randn(h + 1, 1); % one output label (+1 or -1) and a bias term (h + 1)

while 1
%Note that this can be vectorized (and probably should be in Matlab)
%but I simply did not have the time to work it out, sorry.
classifyerror = 0;
for i = 1:numsamples
al = traindata(i,:)*Wl; %forward prop layer 1
z1l = tanh(al); % apply the nonlinearity
%repeat
a2 = [1 z1]%*W2; %introduce bias
z2 = tanh(a2);

%back prop
delta2 = 2*x(z2 - trainlabels(i))*(1 - z272);
deltal = delta2*x(W2(2:h+1)’.*x(1 - z1.72))7;

Solutions 5

%compute the gradients
grad2 = delta2 * [1 z1];
for j = 1:h
gradl(j,:) = traindata(i,:)’.*deltal(j,:);
end
%update weights
Wl = W1l - etaxgradl’;

Wl = Wi./norm(W1l); %normalize
W2 = W2 - etaxgrad2’;
W2 = W2./norm(W2); %normalize

theclass = 2x(a2 >= 0) - 1;

classifyerror = classifyerror + (theclass “= trainlabels(i));
end
classifyerror = classifyerror/numsamples;

if classifyerror < threshold
break;

end

end

